Efficient nonlinear generation of high power, higher order, ultrafast perfect vortices in green


Abstract in English

We report on efficient nonlinear generation of ultrafast, higher order perfect vortices at the green wavelength. Based on Fourier transformation of the higher order Bessel-Gauss beam generated through the combination of spiral phase plate and axicon we have transformed the Gaussian beam of the ultrafast Yb-fiber laser at 1060 nm into perfect vortices of power 4.4 W and order up to 6. Using single-pass second harmonic generation (SHG) of such vortices in 5-mm long chirped MgO-doped, periodically poled congruent LiNbO$_3$ crystal we have generated perfect vortices at green wavelength with output power of 1.2 W and vortex order up to 12 at single-pass conversion efficiency of 27% independent of its order. This is the highest single-pass SHG efficiency of any optical beams other than Gaussian beams. Unlike the disintegration of higher order vortices in birefringent crystals, here, the use of quasi-phase matching process enables generation of high quality vortices even at higher orders. The green perfect vortices of all orders have temporal and spectral width of 507 fs and 1.9 nm, respectively corresponding to a time-bandwidth product of 1.02.

Download