The Role of Nucleon Strangeness in Supernova Explosions


Abstract in English

Recent hydrodynamical simulations of supernova (SN) evolution have highlighted the importance of a thorough control over microscopic physics responsible for such internal processes as neutrino heating. In particular, it has been suggested that modifications to the neutrino-nucleon elastic cross section can potentially play a crucial role in producing successful supernova explosions. One possible source of such corrections can be found in a nonzero value for the nucleons strange helicity content $Delta s$. In the present analysis, however, we show that theoretical and experimental progress over the past decade has suggested a comparatively small magnitude for $Delta s$, such that its sole effect is not sufficient to provide the physics leading to supernova explosions.

Download