Review of Conformally Flat Approximation for Binary Neutron Star Initial Conditions


Abstract in English

The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here we review the status of the original formulation of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasi-circular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasi-circular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect the emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.

Download