Do you want to publish a course? Click here

Artwork creation by a cognitive architecture integrating computational creativity and dual process approaches

303   0   0.0 ( 0 )
 Added by Antonio Lieto
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The paper proposes a novel cognitive architecture (CA) for computational creativity based on the Psi model and on the mechanisms inspired by dual process theories of reasoning and rationality. In recent years, many cognitive models have focused on dual process theories to better describe and implement complex cognitive skills in artificial agents, but creativity has been approached only at a descriptive level. In previous works we have described various modules of the cognitive architecture that allows a robot to execute creative paintings. By means of dual process theories we refine some relevant mechanisms to obtain artworks, and in particular we explain details about the resolution level of the CA dealing with different strategies of access to the Long Term Memory (LTM) and managing the interaction between S1 and S2 processes of the dual process theory. The creative process involves both divergent and convergent processes in either implicit or explicit manner. This leads to four activities (exploratory, reflective, tacit, and analytic) that, triggered by urges and motivations, generate creative acts. These creative acts exploit both the LTM and the WM in order to make novel substitutions to a perceived image by properly mixing parts of pictures coming from different domains. The paper highlights the role of the interaction between S1 and S2 processes, modulated by the resolution level, which focuses the attention of the creative agent by broadening or narrowing the exploration of novel solutions, or even drawing the solution from a set of already made associations. An example of artificial painter is described in some experimentations by using a robotic platform.



rate research

Read More

The human mind is still an unknown process of neuroscience in many aspects. Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different situations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions. Moreover, the proposed model reinforced the precision indexes when submitted to tests with volunteers, proving once again its performance as a cognitive model, when executed with small data volumes. Considering that the proposed model achieved a similar behavior to the traditional models under conditions expected to be similar for natural systems, it can be said that MIRA reinforces the applicability of LIDA as a path to be followed for the study and generation of computational agents inspired by neural behaviors.
65 - Steve DiPaola , Liane Gabora , 2018
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like. Using an original synthesis of Deep Dream-based convolutional neural networks and cognitive based computational art rendering systems, we show how honing theory, intrinsic motivation, and the notion of a seed incident can be implemented computationally, and demonstrate their impact on the resulting generative art. Conversely, we discuss how explorations in deep learn-ing convolutional neural net generative systems can inform our understanding of human creativity. We conclude with ideas for further cross-fertilization between AI based computational creativity and psychology of creativity.
The accumulation of adaptations in an open-ended manner during lifetime learning is a holy grail in reinforcement learning, intrinsic motivation, artificial curiosity, and developmental robotics. We present a specification for a cognitive architecture that is capable of specifying an unlimited range of behaviors. We then give examples of how it can stochastically explore an interesting space of adjacent possible behaviors. There are two main novelties; the first is a proper definition of the fitness of self-generated games such that interesting games are expected to evolve. The second is a modular and evolvable behavior language that has systematicity, productivity, and compositionality, i.e. it is a physical symbol system. A part of the architecture has already been implemented on a humanoid robot.
We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that there is probability p about the fact that typical Cs are Ds. As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.
Evidence-based reasoning is at the core of many problem-solving and decision-making tasks in a wide variety of domains. Generalizing from the research and development of cognitive agents in several such domains, this paper presents progress toward a computational theory for the development of instructable cognitive agents for evidence-based reasoning tasks. The paper also illustrates the application of this theory to the development of four prototype cognitive agents in domains that are critical to the government and the public sector. Two agents function as cognitive assistants, one in intelligence analysis, and the other in science education. The other two agents operate autonomously, one in cybersecurity and the other in intelligence, surveillance, and reconnaissance. The paper concludes with the directions of future research on the proposed computational theory.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا