We use the coordinate Bethe ansatz to exactly calculate matrix elements between eigenstates of the Lieb-Liniger model of one-dimensional bosons interacting via a two-body delta-potential. We investigate the static correlation functions of the zero-temperature ground state and their dependence on interaction strength, and analyze the effects of system size in the crossover from few-body to mesoscopic regimes for up to seven particles. We also obtain time-dependent nonequilibrium correlation functions for five particles following quenches of the interaction strength from two distinct initial states. One quench is from the non-interacting ground state and the other from a correlated ground state near the strongly interacting Tonks-Girardeau regime. The final interaction strength and conserved energy are chosen to be the same for both quenches. The integrability of the model highly constrains its dynamics, and we demonstrate that the time-averaged correlation functions following quenches from these two distinct initial conditions are both nonthermal and moreover distinct from one another.
We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.
We provide experimental evidence of universal dynamics far from equilibrium during the relaxation of an isolated one-dimensional Bose gas. Following a rapid cooling quench, the system exhibits universal scaling in time and space, associated with the approach of a non-thermal fixed point. The time evolution within the scaling period is described by a single universal function and scaling exponent, independent of the specifics of the initial state. Our results provide a quantum simulation in a regime, where to date no theoretical predictions are available. This constitutes a crucial step in the verification of universality far from equilibrium. If successful, this may lead to a comprehensive classification of systems based on their universal properties far from equilibrium, relevant for a large variety of systems at different scales.
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalise at late times. We show that the full thermalising dynamics can be described by the generalised hydrodynamics with diffusion and force terms, and we compare these predictions with numerical simulations. Finally, we provide an explanation for the slow thermalisation rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterised by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalisation can display pre-thermal plateau and relaxation dynamics with long polynomial finite-time corrections.
J. C. Zill
,T. M. Wright
,K. V. Kheruntsyan
.
(2016)
.
"A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium correlations of the one-dimensional Bose gas"
.
Jan Zill
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا