Do you want to publish a course? Click here

Absorption lines from magnetically-driven winds in X-ray binaries

130   0   0.0 ( 0 )
 Added by Susmita Chakravorty
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter ($xi$), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of $p$ ($gtrsim 0.1$, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of $xi$ is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.



rate research

Read More

X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, we decided to investigate the requirements to produce very dense winds. Using physical arguments, hydrodynamical simulations and absorption line calculations, we found that modification of the heating and cooling rates by a factor of a few results in an increase of the wind density of up to an order of magnitude and the wind velocity by a factor of about two. Therefore, the mass loss rate from the disk can be one, if not even two orders of magnitude higher than the accretion rate onto the central object. Such a high mass loss rate is expected to destabilize the disk and perhaps provides a mechanism for state change.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
Blue shifted absorption lines from highly ionised iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionisation state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ~ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
179 - M. Diaz Trigo , L. Boirin 2012
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.
We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range $rm{0.04 leq L_{acc}/L_{Edd} leq 1.0}$ and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity -- and hence the maximum blueshift seen in wind-formed absorption lines -- increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at $rm{dot{M}_{wind}/dot{M}_{acc} simeq 2}$, a behaviour that is consistent with observations. We also present synthetic Fe XXV and Fe XXVI absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا