Do you want to publish a course? Click here

The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking

72   0   0.0 ( 0 )
 Added by Jose Ramon Espinosa
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.



rate research

Read More

We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.
We propose a hypothetical heavy leptonium, the scalar bound state of an exotic lepton-antilepton pair, as a candidate for the recent 750 GeV resonance in the early LHC Run 2 data. Such a para-leptonium is dominantly produced via photon-photon fusion at the LHC and decays into a photon pair with a significant branching fraction. In addition, our model predicts a companion spin-1 ortho-leptonium bound state, which can decay to $W^+W^-$, $fbar{f}$ and three photons. Under the LHC and the electroweak precision observables bounds, we find that the observed excess of 750 GeV diphoton events can be explained within $2sigma$ accuracy for $Y_{L} approx 4.8 - 7.2$ for the minimal case in our scenario. The observation of the ortho-leptonium in the dilepton channel will be the smoking gun for our scenario.
We interpret the di-photon excess recently reported by the ATLAS and CMS collaborations as a new resonance arising from the sgoldstino scalar, which is the superpartner of the Goldstone mode of spontaneous supersymmetry breaking, the goldstino. The sgoldstino is produced at the LHC via gluon fusion and decays to photons, with interaction strengths proportional to the corresponding gaugino masses over the supersymmetry breaking scale. Fitting the excess, while evading bounds from searches in the di-jet, $Zgamma$, $ZZ$ and $WW$ final states, selects the supersymmetry breaking scale to be a few TeV, and particular ranges for the gaugino masses. The two real scalars, corresponding to the CP-even and CP-odd parts of the complex sgoldstino, both have narrow widths, but their masses can be split of the order 10-30 GeV by electroweak mixing corrections, which could account for the preference of a wider resonance width in the current low-statistics data. In the parameter space under consideration, tree-level $F$-term contributions to the Higgs mass arise, in addition to the standard $D$-term contribution proportional to the $Z$-boson mass, which can significantly enhance the tree level Higgs mass.
We propose an NMSSM scenario that can explain the excess in the diphoton spectrum at 750 GeV recently observed by ATLAS and CMS. We show that in a certain limit with a very light pseudoscalar one can reproduce the experimental results without invoking exotic matter. The 750 GeV excess is produced by two resonant heavy Higgs bosons with masses ~750 GeV, that subsequently decay to two light pseudoscalars. Each of these decays to collimated photon pairs that appear as a single photon in the electromagnetic calorimeter. A mass gap between heavy Higgses mimics a large width of the 750 GeV peak. The production mechanism, containing a strong component via initial b quarks, ameliorates a possible tension with 8 TeV data compared to other production modes. We also discuss other constraints, in particular from low energy experiments. Finally, we discuss possible methods that could distinguish our proposal from other physics models describing the diphoton excess in the Run-II of the LHC.
106 - D. T. Huong , P. V. Dong 2016
We propose the left-right models based on SU(3)_Cotimes SU(M)_L otimes SU(N)_R otimes U(1)_X gauge symmetry for (M,N)=(3,3), (2,3), and (3,2) that address the 750 GeV diphoton excess recently reported by the LHC. The fermion contents are minimally introduced, and the generation number must match the fundamental color number to cancel anomalies and ensure QCD asymptotic freedom. The diphoton excess arises from the field that breaks the left-right symmetry spontaneously in the first model, while for the last models it emerges as an explicit violation of the left-right symmetry. The neutrino masses, flavor-changing neutral currents, and new boson searches are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا