Do you want to publish a course? Click here

RDF2Rules: Learning Rules from RDF Knowledge Bases by Mining Frequent Predicate Cycles

119   0   0.0 ( 0 )
 Added by Zhichun Wang
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Recently, several large-scale RDF knowledge bases have been built and applied in many knowledge-based applications. To further increase the number of facts in RDF knowledge bases, logic rules can be used to predict new facts based on the existing ones. Therefore, how to automatically learn reliable rules from large-scale knowledge bases becomes increasingly important. In this paper, we propose a novel rule learning approach named RDF2Rules for RDF knowledge bases. RDF2Rules first mines frequent predicate cycles (FPCs), a kind of interesting frequent patterns in knowledge bases, and then generates rules from the mined FPCs. Because each FPC can produce multiple rules, and effective pruning strategy is used in the process of mining FPCs, RDF2Rules works very efficiently. Another advantage of RDF2Rules is that it uses the entity type information when generates and evaluates rules, which makes the learned rules more accurate. Experiments show that our approach outperforms the compared approach in terms of both efficiency and accuracy.



rate research

Read More

Many large-scale knowledge bases simultaneously represent two views of knowledge graphs (KGs): an ontology view for abstract and commonsense concepts, and an instance view for specific entities that are instantiated from ontological concepts. Existing KG embedding models, however, merely focus on representing one of the two views alone. In this paper, we propose a novel two-view KG embedding model, JOIE, with the goal to produce better knowledge embedding and enable new applications that rely on multi-view knowledge. JOIE employs both cross-view and intra-view modeling that learn on multiple facets of the knowledge base. The cross-view association model is learned to bridge the embeddings of ontological concepts and their corresponding instance-view entities. The intra-view models are trained to capture the structured knowledge of instance and ontology views in separate embedding spaces, with a hierarchy-aware encoding technique enabled for ontologies with hierarchies. We explore multiple representation techniques for the two model components and investigate with nine variants of JOIE. Our model is trained on large-scale knowledge bases that consist of massive instances and their corresponding ontological concepts connected via a (small) set of cross-view links. Experimental results on public datasets show that the best variant of JOIE significantly outperforms previous models on instance-view triple prediction task as well as ontology population on ontologyview KG. In addition, our model successfully extends the use of KG embeddings to entity typing with promising performance.
Multiple web-scale Knowledge Bases, e.g., Freebase, YAGO, NELL, have been constructed using semi-supervised or unsupervised information extraction techniques and many of them, despite their large sizes, are continuously growing. Much research effort has been put into mining inference rules from knowledge bases. To address the task of rule mining over evolving web-scale knowledge bases, we propose a parallel incremental rule mining framework. Our approach is able to efficiently mine rules based on the relational model and apply updates to large knowledge bases; we propose an alternative metric that reduces computation complexity without compromising quality; we apply multiple optimization techniques that reduce runtime by more than 2 orders of magnitude. Experiments show that our approach efficiently scales to web-scale knowledge bases and saves over 90% time compared to the state-of-the-art batch rule mining system. We also apply our optimization techniques to the batch rule mining algorithm, reducing runtime by more than half compared to the state-of-the-art. To the best of our knowledge, our incremental rule mining system is the first that handles updates to web-scale knowledge bases.
The problem of discovering frequent itemsets including rare ones has received a great deal of attention. The mining process needs to be flexible enough to extract frequent and rare regularities at once. On the other hand, it has recently been shown that constraint programming is a flexible way to tackle data mining tasks. In this paper, we propose a constraint programming approach for mining itemsets with multiple minimum supports. Our approach provides the user with the possibility to express any kind of constraints on the minimum item supports. An experimental analysis shows the practical effectiveness of our approach compared to the state of the art.
Equipping machines with comprehensive knowledge of the worlds entities and their relationships has been a long-standing goal of AI. Over the last decade, large-scale knowledge bases, also known as knowledge graphs, have been automatically constructed from web contents and text sources, and have become a key asset for search engines. This machine knowledge can be harnessed to semantically interpret textual phrases in news, social media and web tables, and contributes to question answering, natural language processing and data analytics. This article surveys fundamental concepts and practical methods for creating and curating large knowledge bases. It covers models and methods for discovering and canonicalizing entities and their semantic types and organizing them into clean taxonomies. On top of this, the article discusses the automatic extraction of entity-centric properties. To support the long-term life-cycle and the quality assurance of machine knowledge, the article presents methods for constructing open schemas and for knowledge curation. Case studies on academic projects and industrial knowledge graphs complement the survey of concepts and methods.
The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the worlds largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا