Do you want to publish a course? Click here

Experimental test of Heisenbergs measurement uncertainty relation based on statistical distances

66   0   0.0 ( 0 )
 Added by Jiangfeng Du
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenbergs original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [Phys. Rev. Lett. 111, 160405 (2013); Phys. Rev. A 89, 012129 (2014)]. Here we reform their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible but typically non-commutative observables on one qubit are measured simultaneously.



rate research

Read More

Uncertainty relation is one of the fundamental principle in quantum mechanics and plays an important role in quantum information science. We experimentally test the error-disturbance uncertainty relation (EDR) with continuous variables for Gaussian states. Two conjugate continuous-variable observables, amplitude and phase quadratures of an optical mode, are measured simultaneously by using a heterodyne measurement system. The EDR with continuous variables for a coherent state, a squeezed state and a thermal state are verified experimentally. Our experimental results demonstrate that Heisenbergs EDR with continuous variables is violated, yet Ozawas and Branciards EDR with continuous variables are validated.
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system. In the literature, many experiments have been devoted to the test of the uncertainty relations which mainly focus on the pure states. Here we present an experimental investigation on the optimal majorization uncertainty for mixed states by means of the coherent light. The polarization states with adjustable mixedness are prepared by the combination of two coherent beams, and we test the majorization uncertainty relation for three incompatible observables using the prepared mixed states. The experimental results show that the direct sum majorization uncertainty relations are tight and optimal for general mixed systems.
Heisenbergs original uncertainty relation is related to measurement effect, which is different from the preparation uncertainty relation. However, it has been shown that Heisenbergs error-disturbance uncertainty relation can be violated in some cases. We experimentally test the error-tradeoff uncertainty relation by using a continuous-variable Einstein-Podolsky-Rosen (EPR) entangled state. Based on the quantum correlation between the two entangled optical beams, the errors on amplitude and phase quadratures of one EPR optical beam coming from joint measurement are estimated respectively, which are used to verify the error-tradeoff relation. Especially, the error-tradeoff relation for error-free measurement of one observable is verified in our experiment. We also verify the error-tradeoff relations for nonzero errors and mixed state by introducing loss on one EPR beam. Our experimental results demonstrate that Heisenbergs error-tradeoff uncertainty relation is violated in some cases for a continuous-variable system, while the Ozawas and Brainciards relations are valid.
89 - H.M. Wiseman 2002
Heisenbergs position-measurement--momentum-disturbance relation is derivable from the uncertainty relation $sigma(q)sigma(p) geq hbar/2$ only for the case when the particle is initially in a momentum eigenstate. Here I derive a new measurement--disturbance relation which applies when the particle is prepared in a twin-slit superposition and the measurement can determine at which slit the particle is present. The relation is $d times Delta p geq 2hbar/pi$, where $d$ is the slit separation and $Delta p=D_{M}(P_{f},P_{i})$ is the Monge distance between the initial $P_{i}(p)$ and final $P_{f}(p)$ momentum distributions.
While the slogan no measurement without disturbance has established itself under the name Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary results. Here we show that despite recent claims to the contrary [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)], Heisenberg-type inequalities can be proven that describe a trade-off between the precision of a position measurement and the necessary resulting disturbance of momentum (and vice versa). More generally, these inequalities are instances of an uncertainty relation for the imprecisions of any joint measurement of position and momentum. Measures of error and disturbance are here defined as figures of merit characteristic of measuring devices. As such they are state independent, each giving worst-case estimates across all states, in contrast to previous work that is concerned with the relationship between error and disturbance in an individual state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا