Do you want to publish a course? Click here

Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

76   0   0.0 ( 0 )
 Added by Frithjof Karsch
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, $S_Bsigma_B = chi_3^B/chi_1^B$, and the kurtosis ratio, $kappa_Bsigma_B^2 =chi_4^B/chi_2^B$. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to $kappa_Bsigma_B^2$ however is approximately three times larger than that for $S_Bsigma_B$. The former thus drops much more rapidly with increasing beam energy, $sqrt{s_{NN}}$. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at $sqrt{s_{NN}}ge 19.6$~GeV.



rate research

Read More

108 - Frithjof Karsch 2019
We present recent results on the critical and pseudo-critical temperatures in (2+1)-flavor QCD with a physical strange quark mass and two degenerate light quark masses extrapolated to the chiral limit and tuned to the physical value, respectively. We furthermore discuss implication of the observed low chiral phase transition temperature, Tc0=132_{-6}^{+3} MeV, for the structure of cumulants of conserved charge fluctuations at vanishing baryon chemical potential and consequences for the possible location of the QCD critical endpoint in the QCD phase diagram at non-zero baryon chemical potential.
We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3times12$. Higher order fluctuations at $mu_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulants as functions of temperature and chemical potential, which satisfy the experimental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively explain the behavior of the measured cumulant ratios by the STAR collaboration.
285 - Frithjof Karsch 2017
Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.
The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of $g_A^{^{3}{rm H}}/g_A^p=0.91substack{+0.07 -0.09}$. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton.
205 - C. Alexandrou 2011
We present the first calculation on the $Delta$ axial-vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to $Delta$ axial transition coupling constant and $Delta$ axial charge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا