Do you want to publish a course? Click here

Competing many-body instabilities in two-dimensional dipolar Fermi gases

214   0   0.0 ( 0 )
 Added by Ahmet Keles
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experiments on quantum degenerate Fermi gases of magnetic atoms and dipolar molecules begin to probe their broken symmetry phases dominated by the long-range, anisotropic dipole-dipole interaction. Several candidate phases including the p-wave superfluid, the stripe density wave, and a supersolid have been proposed theoretically for two-dimensional spinless dipolar Fermi gases. Yet the phase boundaries predicted by different approximations vary greatly, and a definitive phase diagram is still lacking. Here we present a theory that treats all competing many-body instabilities in the particle-particle and particle-hole channel on equal footing. We obtain the low temperature phase diagram by numerically solving the functional renormalization-group flow equations and find a nontrivial density wave phase at small dipolar tilting angles and strong interactions, but no evidence of the supersolid phase. We also estimate the critical temperatures of the ordered phases.



rate research

Read More

We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.
418 - Ahmet Keles , Erhai Zhao , 2018
Is there a quantum many-body system that scrambles information as fast as a black hole? The Sachev-Ye-Kitaev model can saturate the conjectured bound for chaos, but it requires random all-to-all couplings of Majorana fermions that are hard to realize in experiments. Here we examine a quantum spin model of randomly oriented dipoles where the spin exchange is governed by dipole-dipole interactions. The model is inspired by recent experiments on dipolar spin systems of magnetic atoms, dipolar molecules, and nitrogen-vacancy centers. We map out the phase diagram of this model by computing the energy level statistics, spectral form factor, and out-of-time-order correlation (OTOC) functions. We find a broad regime of many-body chaos where the energy levels obey Wigner-Dyson statistics and the OTOC shows distinctive behaviors at different times: Its early-time dynamics is characterized by an exponential growth, while the approach to its saturated value at late times obeys a power law. The temperature scaling of the Lyapunov exponent $lambda_L$ shows that while it is well below the conjectured bound $2pi T$ at high temperatures, $lambda_L$ approaches the bound at low temperatures and for large number of spins.
125 - X. Y. Yin , Hui Hu , Xia-Ji Liu 2019
Quantum anomaly manifests itself in the deviation of breathing mode frequency from the scale invariant value of $2omega$ in two-dimensional harmonically trapped Fermi gases, where $omega$ is the trapping frequency. Its recent experimental observation with cold-atoms reveals an unexpected role played by the effective range of interactions, which requires quantitative theoretical understanding. Here we provide accurate, benchmark results on quantum anomaly from a few-body perspective. We consider the breathing mode of a few trapped interacting fermions in two dimensions up to six particles and present the mode frequency as a function of scattering length for a wide range of effective range. We show that the maximum quantum anomaly gradually reduces as effective range increases while the maximum position shifts towards the weak-coupling limit. We extrapolate our few-body results to the many-body limit and find a good agreement with the experimental measurements. Our results may also be directly applicable to a few-fermion system prepared in microtraps and optical tweezers.
191 - Shaoyu Yin , J.-P. Martikainen , 2013
We study the superfluid properties of two-dimensional spin-population-imbalanced Fermi gases to explore the interplay between the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and the possible instability towards the Fulde-Ferrell (FF) state. By the mean-field approximation together with quantum fluctuations, we obtain phase diagrams as functions of temperature, chemical potential imbalance and binding energy. We find that the fluctuations change the mean-field phase diagram significantly. We also address possible effects of the phase separation and/or the anisotropic FF phase to the BKT mechanism. The superfluid density tensor of the FF state is obtained, and its transverse component is found always vanishing. This causes divergent fluctuations and possibly precludes the existence of the FF state at any non-zero temperature.
We investigate the effect of dipolar interactions in one-dimensional systems in connection with the possibility of observing exotic many-body effects with trapped atomic and molecular dipolar gases. By combining analytical and numerical methods, we show how the competition between short- and long-range interactions gives rise to frustrating effects which lead to the stabilization of spontaneously dimerized phases characterized by a bond-ordering. This genuine quantum order is sharply distinguished from Mott and spin-density wave phases, and can be unambiguously probed by measuring non local order parameters in-situ imaging techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا