No Arabic abstract
We present a Heisenberg operator based formulation of coherent quantum feedback and Pyragas control. This model is easy to implement and allows for an efficient and fast calculation of the dynamics of feedback-driven observables as the number of contributing correlations grows in systems with a fixed number of excitations only linearly in time. Furthermore, our model unravels the quantum kinetics of entanglement growth in the system by explicitly calculating non-Markovian multi-time correlations, e.g., how the emission of a photon is correlated with an absorption process in the past. Therefore, the time-delayed differential equations are expressed in terms of insightful physical quantities. Another considerate advantage of this method is its compatibility to typical approximation schemes, such as factorization techniques and the semi-classical treatment of coherent fields. This allows the application on a variety of setups, ranging from closed quantum systems in the few excitation regimes to open systems and Pyragas control in general.
The standard quantum formalism introduced at the undergraduate level treats measurement as an instantaneous collapse. In reality however, no physical process can occur over a truly infinitesimal time interval. A more subtle investigation of open quantum systems lead to the theory of continuous measurement and quantum trajectories, in which wave function collapse occurs over a finite time scale associated with an interaction. Within this formalism, it becomes possible to ask many new questions that would be trivial or even ill-defined in the context of the more basic measurement model. In this thesis, we investigate both theoretically and experimentally what fundamentally new capabilities arise when an experimental apparatus can resolve the continuous dynamics of a measurement. Theoretically, we show that when one can perform feedback operations on the timescale of the measurement process, the resulting tools provide significantly more control over entanglement generation, and in some settings can generate it optimally. We derive these results using a novel formalism which encompasses most known quantum feedback protocols. Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements, which provides a reinterpretation of the Heisenberg uncertainty principle. Finally, we combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier. The resulting system is capable of adaptive measurement, which we use to perform the first canonical phase measurement.
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.
The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism.
Based on a recently developed notion of physical realizability for quantum linear stochastic systems, we formulate a quantum LQG optimal control problem for quantum linear stochastic systems where the controller itself may also be a quantum system and the plant output signal can be fully quantum. Such a control scheme is often referred to in the quantum control literature as coherent feedback control. It distinguishes the present work from previous works on the quantum LQG problem where measurement is performed on the plant and the measurement signals are used as input to a fully classical controller with no quantum degrees of freedom. The difference in our formulation is the presence of additional non-linear and linear constraints on the coefficients of the sought after controller, rendering the problem as a type of constrained controller design problem. Due to the presence of these constraints our problem is inherently computationally hard and this also distinguishes it in an important way from the standard LQG problem. We propose a numerical procedure for solving this problem based on an alternating projections algorithm and, as initial demonstration of the feasibility of this approach, we provide fully quantum controller design examples in which numerical solutions to the problem were successfully obtained. For comparison, we also consider the case of classical linear controllers that use direct or indirect measurements, and show that there exists a fully quantum linear controller which offers an improvement in performance over the classical ones.
Future communication and computation technologies that exploit quantum information require robust and well-isolated qubits. Electron spins in III-V semiconductor quantum dots, while promising candidates, see their dynamics limited by undesirable hysteresis and decohering effects of the nuclear spin bath. Replacing electrons with holes should suppress the hyperfine interaction and consequently eliminate strong nuclear effects. Using picosecond optical pulses, we demonstrate coherent control of a single hole qubit and examine both free-induction and spin-echo decay. In moving from electrons to holes, we observe significantly reduced hyperfine interactions, evidenced by the reemergence of hysteresis-free dynamics, while obtaining similar coherence times, limited by non-nuclear mechanisms. These results demonstrate the potential of optically controlled, quantum dot hole qubits.