No Arabic abstract
We study holographic entanglement entropy in Gauss-Bonnet gravity following a global quench. It is known that in dynamical scenarios the entanglement entropy probe penetrates the apparent horizon. The goal of this work is to study how far behind the horizon can the entanglement probe reach in a Gauss-Bonnet theory. We find that the behavior is quite different depending on the sign of the Gauss-Bonnet coupling $lambda_{GB}$. We show that for $lambda_{GB} > 0$ the holographic entanglement entropy probe explores less of the spacetime behind the horizon than in Einstein gravity. On the other hand, for $lambda_{GB} < 0$ the results are strikingly different; for early times a new family of solutions appears. These new solutions reach arbitrarily close to the singularity. We calculate the entanglement entropy for the two family of solutions with negative coupling and find that the ones that reach the singularity are the ones of less entropy. Thus, for $lambda_{GB} < 0$ the holographic entanglement entropy probes further behind the horizon than in Einstein gravity. In fact, for early times it can explore all the way to the singularity.
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-dimensional superconductors with Gauss-Bonnet corrections in the probe limit. We find that the curvature correction has a more subtle effect on the scalar condensates in the s-wave superconductor in ($2+1$)-dimensions, which is different from the finding in the higher-dimensional superconductors that the higher curvature correction makes the scalar hair more difficult to be developed in the full parameter space. However, in the p-wave case, we observe that the higher curvature correction always makes it harder for the vector condensates to form in various dimensions. Moreover, we note that the higher curvature correction results in the larger deviation from the expected relation in the gap frequency $omega_g/T_capprox 8$ in both ($2+1$)-dimensional s-wave and p-wave models.
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.
We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermalization by examining three nonlocal observables, the two-point function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these three observables and we find that as the strength of the Gauss-Bonnet coupling is increased, the saturation time of the thermalization process to reach thermal equilibrium becomes shorter with the dominant effect given by the holographic entanglement entropy.
We construct the holographic superconductors away from the probe limit in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity. We observe that, both for the ground state and excited states, the critical temperature first decreases then increases as the curvature correction tends towards the Chern-Simons limit in a backreaction dependent fashion. However, the decrease of the backreaction, the increase of the scalar mass, or the increase of the number of nodes will weaken this subtle effect of the curvature correction. Moreover, for the curvature correction approaching the Chern-Simons limit, we find that the gap frequency $omega_g/T_c$ of the conductivity decreases first and then increases when the backreaction increases in a scalar mass dependent fashion, which is different from the finding in the ($3+1$)-dimensional superconductors that increasing backreaction increases $omega_g/T_c$ in the full parameter space. The combination of the Gauss-Bonnet gravity and backreaction provides richer physics in the scalar condensates and conductivity in the ($2+1$)-dimensional superconductors.
We investigate holographic cosmologies appearing in the braneworld model with a uniformly distributed $p$-brane gas. When $p$-branes extend to the radial direction, an observer living in the brane detects $(p-1)$-dimensional extended objects. On this background, we show that the braneworld model reproduces the expanding universes of the standard cosmology. In an expanding universe with a matter, we investigate the entanglement entropy between the visible and invisible universes across the cosmological (or particle) horizon. We show that, though the visible and invisible universes are causally disconnected, the nonlocal quantum correlation gives rise to a nontrivial time-dependent entanglement entropy relying on the matter.