Do you want to publish a course? Click here

Factorisation of germ-like series

82   0   0.0 ( 0 )
 Added by Vincenzo Mantova
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A classical tool in the study of real closed fields are the fields $K((G))$ of generalised power series (i.e., formal sums with well-ordered support) with coefficients in a field $K$ of characteristic 0 and exponents in an ordered abelian group $G$. A fundamental result of Berarducci ensures the existence of irreducible series in the subring $K((G^{leq 0}))$ of $K((G))$ consisting of the generalised power series with non-positive exponents. It is an open question whether the factorisations of a series in such subring have common refinements, and whether the factorisation becomes unique after taking the quotient by the ideal generated by the non-constant monomials. In this paper, we provide a new class of irreducibles and prove some further cases of uniqueness of the factorisation.



rate research

Read More

Fields of generalised power series (or Hahn fields), with coefficients in a field and exponents in a divisible ordered abelian group, are a fundamental tool in the study of valued and ordered fields and asymptotic expansions. The subring of the series with non-positive exponents appear naturally when discussing exponentiation, as done in transseries, or integer parts. A notable example is the ring of omnific integers inside the field of Conways surreal numbers. In general, the elements of such subrings do not have factorisations into irreducibles. In the context of omnific integers, Conway conjectured in 1976 that certain series are irreducible (proved by Berarducci in 2000), and that any two factorisations of a given series share a common refinement. Here we prove a factorisation theorem for the ring of series with non-positive real exponents: every series is shown to be a product of irreducible series with infinite support and a factor with finite support which is unique up to constants. From this, we shall deduce a general factorisation theorem for series with exponents in an arbitrary divisible ordered abelian group, including omnific integers as a special case. We also obtain new irreducibility and primality criteria. To obtain the result, we prove that a new ordinal-valued function, which we call degree, is a valuation on the ring of generalised power series with real exponents, and we formulate some structure results on the associated RV monoid.
We report on a novel stochastic analysis of seismic time series for the Earths vertical velocity, by using methods originally developed for complex hierarchical systems, and in particular for turbulent flows. Analysis of the fluctuations of the detrended increments of the series reveals a pronounced change of the shapes of the probability density functions (PDF) of the series increments. Before and close to an earthquake the shape of the PDF and the long-range correlation in the increments both manifest significant changes. For a moderate or large-size earthquake the typical time at which the PDF undergoes the transition from a Gaussian to a non-Gaussian is about 5-10 hours. Thus, the transition represents a new precursor for detecting such earthquakes.
We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabilistic approaches, and do not require additional samples to estimate the posterior. We show that in particular for matrix tri-factorisation convergence is difficult, but our variational Bayesian approach offers a fast solution, allowing the tri-factorisation approach to be used more effectively.
Every set of natural numbers determines a generating function convergent for $q in (-1,1)$ whose behavior as $q rightarrow 1^-$ determines a germ. These germs admit a natural partial ordering that can be used to compare sets of natural numbers in a manner that generalizes both cardinality of finite sets and density of infinite sets. For any finite set $D$ of positive integers, call a set $S$ $D$-avoiding if no two elements of $S$ differ by an element of $D$. We study the problem of determining, for fixed $D$, all $D$-avoiding sets that are maximal in the germ order. In many cases, we can show that there is exactly one such set. We apply this to the study of one-dimensional packing problems.
It is possible to approach regression analysis with random covariates from a semiparametric perspective where information is combined from multiple multivariate sources. The approach assumes a semiparametric density ratio model where multivariate distributions are regressed on a reference distribution. A kernel density estimator can be constructed from many data sources in conjunction with the semiparametric model. The estimator is shown to be more efficient than the traditional single-sample kernel density estimator, and its optimal bandwidth is discussed in some detail. Each multivariate distribution and the corresponding conditional expectation (regression) of interest are estimated from the combined data using all sources. Graphical and quantitative diagnostic tools are suggested to assess model validity. The method is applied in quantifying the effect of height and age on weight of germ cell testicular cancer patients. Comparisons are made with multiple regression, generalized additive models (GAM) and nonparametric kernel regression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا