Do you want to publish a course? Click here

Hierarchical Quantification of Synergy in Channels

51   0   0.0 ( 0 )
 Added by Paolo Perrone
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The decomposition of channel information into synergies of different order is an open, active problem in the theory of complex systems. Most approaches to the problem are based on information theory, and propose decompositions of mutual information between inputs and outputs in se-veral ways, none of which is generally accepted yet. We propose a new point of view on the topic. We model a multi-input channel as a Markov kernel. We can project the channel onto a series of exponential families which form a hierarchical structure. This is carried out with tools from information geometry, in a way analogous to the projections of probability distributions introduced by Amari. A Pythagorean relation leads naturally to a decomposition of the mutual information between inputs and outputs into terms which represent single node information, pairwise interactions, and in general n-node interactions. The synergy measures introduced in this paper can be easily evaluated by an iterative scaling algorithm, which is a standard procedure in information geometry.



rate research

Read More

We consider the problem of decomposing the total mutual information conveyed by a pair of predictor random variables about a target random variable into redundant, unique and synergistic contributions. We focus on the relationship between redundant information and the more familiar information-theoretic notions of common information. Our main contribution is an impossibility result. We show that for independent predictor random variables, any common information based measure of redundancy cannot induce a nonnegative decomposition of the total mutual information. Interestingly, this entails that any reasonable measure of redundant information cannot be derived by optimization over a single random variable.
148 - Tobias Koch , Amos Lapidoth 2008
The capacity of discrete-time, non-coherent, multipath fading channels is considered. It is shown that if the delay spread is large in the sense that the variances of the path gains do not decay faster than geometrically, then capacity is bounded in the signal-to-noise ratio.
249 - Tobias Koch , Amos Lapidoth 2008
The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.
After receiving useful peer comments, we would like to withdraw this paper.
This work considers an additive noise channel where the time-k noise variance is a weighted sum of the channel input powers prior to time k. This channel is motivated by point-to-point communication between two terminals that are embedded in the same chip. Transmission heats up the entire chip and hence increases the thermal noise at the receiver. The capacity of this channel (both with and without feedback) is studied at low transmit powers and at high transmit powers. At low transmit powers, the slope of the capacity-vs-power curve at zero is computed and it is shown that the heating-up effect is beneficial. At high transmit powers, conditions are determined under which the capacity is bounded, i.e., under which the capacity does not grow to infinity as the allowed average power tends to infinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا