Density matrix renormalization group on a cylinder in mixed real and momentum space


Abstract in English

We develop a variant of the density matrix renormalization group (DMRG) algorithm for two-dimensional cylinders that uses a real space representation along the cylinder and a momentum space representation in the perpendicular direction. The mixed representation allows us to use the momentum around the circumference as a conserved quantity in the DMRG algorithm. Compared with the traditional purely real-space approach, we find a significant speedup in computation time and a considerable reduction in memory usage. Applying the method to the interacting fermionic Hofstadter model, we demonstrate a reduction in computation time by over 20-fold, in addition to a sixfold memory reduction.

Download