Do you want to publish a course? Click here

Herschel Far-Infrared Photometry of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. II. SPIRE Observations

85   0   0.0 ( 0 )
 Added by T. Taro Shimizu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

We combine the Herschel Space Observatory PACS and SPIRE photometry with archival WISE photometry to construct the spectral energy distributions (SED) for over 300 local ($z < 0.05$), ultra-hard X-ray (14 - 195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) 58 month catalogue. Using a simple analytical model that combines an exponentially cut-off powerlaw with a single temperature modified blackbody, we decompose the SEDs into a host-galaxy and AGN component. We calculate dust masses, dust temperatures, and star-formation rates (SFR) for our entire sample and compare them to a stellar mass-matched sample of local non-AGN galaxies. We find AGN host galaxies have systematically higher dust masses, dust temperatures, and SFRs due to the higher prevalence of late-type galaxies to host an AGN, in agreement with previous studies of the Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into 8 - 1000 $mu$m AGN luminosities, as well as determine the best mid-to-far IR colors for identifying AGN dominated galaxies in the IR regime. We find that for nearly 30 per cent of our sample, the 70 $mu$m emission contains a significant contribution from the AGN ($> 0.5$), especially at higher luminosities ($L_{14-195,rm{keV}} > 10^{42.5}$ ergs s$^{-1}$). Finally, we measure the local SFR-AGN luminosity relationship, finding a slope of 0.18, large scatter (0.37 dex), and no evidence for an upturn at high AGN luminosity. We conclude with a discussion on the implications of our results within the context of galaxy evolution with and without AGN feedback.
We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 -- 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 micron, [Ne II] 12.81 micron, [Ne III] 15.56 micron and [Ne V] 14.32/24.32 micron, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compare the mid-infrared emission-lines in the BAT AGNs with those from published studies of ULIRGs, PG QSOs, star-forming galaxies and LINERs. We find that the BAT AGN sample fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGN than those found for the BAT AGN, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGN and star forming galaxies.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
122 - D. Asmus , P. Gandhi , S.F. Hoenig 2015
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.
We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We adopt FIR luminosities at 90 and 100 um as SF luminosities, assuming the proposed linear proportionality of star formation rate with FIR luminosities. By estimating AGN luminosities from [OIII]5007 and [OI]6300 emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with the recent reports that low-luminosity AGNs show essentially no correlation between FIR and X-ray luminosities, while the discrepancy is likely due to the Malmquist and sample selection biases. By analyzing the spectral energy distribution, we find that pure-AGN candidates, of which FIR radiation is thought to be AGN-dominated, show significantly low-SF activities. These AGNs hosted by low-SF galaxies are rare in our sample (~ 1%). However, the low fraction of low-SF AGN is possibly due to observational limitations since the recent FIR surveys are insufficient to examine the population of high-luminosity AGNs hosted by low-SF galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا