$(1-2u^k)$-constacyclic codes over $mathbb{F}_p+umathbb{F}_p+u^2mathbb{F}_+u^{3}mathbb{F}_{p}+dots+u^{k}mathbb{F}_{p}$


Abstract in English

Let $mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $mathcal{R}=mathbb{F}_p+umathbb{F}_p+u^2mathbb{F}_p+u^{3}mathbb{F}_{p}+cdots+u^{k}mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

Download