Do you want to publish a course? Click here

Observation of the Efimovian Expansion in Scale Invariant Fermi Gases

61   0   0.0 ( 0 )
 Added by Haibin Wu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scale invariance emerges and plays an important role in strongly correlated many-body systems such as critical regimes nearby phase transitions and the unitary Fermi gases. Discrete scaling symmetry also manifests itself in quantum few-body systems such as the Efimov effect. Here we report both theoretical predication and experimental observation of a novel type expansion dynamics for scale invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time $t$, surprisingly, the expansion of cloud size exhibits a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor and the entire expansion dynamics is governed by a log-periodic function. This striking expansion of quantum Fermi gases shares similar scaling laws and same mathematical description as the Efimov effect. Our work demonstrates the first expansion dynamics of a quantum many-body system with the temporal discrete scaling symmetry, which reveals the underlying spatial continuous scaling symmetry of the many-body system.



rate research

Read More

We exploit a time-resolved pump-probe spectroscopic technique to study the out-of-equilibrium dynamics of an ultracold two-component Fermi gas, selectively quenched to strong repulsion along the upper branch of a broad Feshbach resonance. For critical interactions, we find the rapid growth of short-range anti-correlations between repulsive fermions to initially overcome concurrent pairing processes. At longer evolution times, these two competing mechanisms appear to macroscopically coexist in a short-range correlated state of fermions and pairs, unforeseen thus far. Our work provides fundamental insights into the fate of a repulsive Fermi gas, and offers new perspectives towards the exploration of complex dynamical regimes of fermionic matter.
We present a general method, based on a multiple-scale approach, for deriving the perturbative solutions of the scaling equations governing the expansion of superfluid ultracold quantum gases released from elongated harmonic traps. We discuss how to treat the secular terms appearing in the usual naive expansion in the trap asymmetry parameter epsilon, and calculate the next-to-leading correction for the asymptotic aspect ratio, with significant improvement over the previous proposals.
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of $^{40}$K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter $gamma = 1.08(9)$ and a bare transverse spin diffusivity $D_0^perp = 2.3(4),hbar/m$ for a normal-state gas initialized with full polarization and at one fifth of the Fermi temperature, where $m$ is the atomic mass. One might expect $gamma = 0$ at unitarity, where two-body scattering is purely dissipative. We observe $gamma rightarrow 0$ as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a non-zero $gamma$. Tuning the scattering length $a$, we find that a sign change in $gamma$ occurs in the range $0 < (k_F a)^{-1} lesssim 1.3$, where $k_F$ is the Fermi momentum. We discuss how $gamma$ reveals the effective interaction strength of the gas, such that the sign change in $gamma$ indicates a switching of branch, between a repulsive and an attractive Fermi gas.
Motivated by a recent experiment [Revelle et al. Phys. Rev. Lett. 117, 235301 (2016)] that characterized the one- to three-dimensional crossover in a spin-imbalanced ultracold gas of $^6$Li atoms trapped in a two-dimensional array of tunnel-coupled tubes, we calculate the phase diagram for this system using Hartree-Fock Bogoliubov-de Gennes mean-field theory, and compare the results with experimental data. Mean-field theory predicts fully spin-polarized normal, partially spin-polarized normal, spin-polarized superfluid, and spin-balanced superfluid phases in a homogeneous system. We use the local density approximation to obtain density profiles of the gas in a harmonic trap. We compare these calculations with experimental measurements in Revelle {em et al.} as well as previously unpublished data. Our calculations qualitatively agree with experimentally-measured densities and coordinates of the phase boundaries in the trap, and quantitatively agree with experimental measurements at moderate-to-large polarizations. Our calculations also reproduce the experimentally-observed universal scaling of the phase boundaries for different scattering lengths at a fixed value of scaled inter-tube tunneling. However, our calculations have quantitative differences with experimental measurements at low polarization, and fail to capture important features of the one- to three-dimensional crossover observed in experiments. These suggest the important role of physics beyond-mean-field theory in the experiments. We expect that our numerical results will aid future experiments in narrowing the search for the FFLO phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا