No Arabic abstract
In this paper, we attempt to improve Statistical Machine Translation (SMT) systems on a very diverse set of language pairs (in both directions): Czech - English, Vietnamese - English, French - English and German - English. To accomplish this, we performed translation model training, created adaptations of training settings for each language pair, and obtained comparable corpora for our SMT systems. Innovative tools and data adaptation techniques were employed. The TED parallel text corpora for the IWSLT 2015 evaluation campaign were used to train language models, and to develop, tune, and test the system. In addition, we prepared Wikipedia-based comparable corpora for use with our SMT system. This data was specified as permissible for the IWSLT 2015 evaluation. We explored the use of domain adaptation techniques, symmetrized word alignment models, the unsupervised transliteration models and the KenLM language modeling tool. To evaluate the effects of different preparations on translation results, we conducted experiments and used the BLEU, NIST and TER metrics. Our results indicate that our approach produced a positive impact on SMT quality.
Parallel texts are a relatively rare language resource, however, they constitute a very useful research material with a wide range of applications. This study presents and analyses new methodologies we developed for obtaining such data from previously built comparable corpora. The methodologies are automatic and unsupervised which makes them good for large scale research. The task is highly practical as non-parallel multilingual data occur much more frequently than parallel corpora and accessing them is easy, although parallel sentences are a considerably more useful resource. In this study, we propose a method of automatic web crawling in order to build topic-aligned comparable corpora, e.g. based on the Wikipedia or Euronews.com. We also developed new methods of obtaining parallel sentences from comparable data and proposed methods of filtration of corpora capable of selecting inconsistent or only partially equivalent translations. Our methods are easily scalable to other languages. Evaluation of the quality of the created corpora was performed by analysing the impact of their use on statistical machine translation systems. Experiments were presented on the basis of the Polish-English language pair for texts from different domains, i.e. lectures, phrasebooks, film dialogues, European Parliament proceedings and texts contained medicines leaflets. We also tested a second method of creating parallel corpora based on data from comparable corpora which allows for automatically expanding the existing corpus of sentences about a given domain on the basis of analogies found between them. It does not require, therefore, having past parallel resources in order to train a classifier.
The multilingual nature of the world makes translation a crucial requirement today. Parallel dictionaries constructed by humans are a widely-available resource, but they are limited and do not provide enough coverage for good quality translation purposes, due to out-of-vocabulary words and neologisms. This motivates the use of statistical translation systems, which are unfortunately dependent on the quantity and quality of training data. Such systems have a very limited availability especially for some languages and very narrow text domains. In this research we present our improvements to current comparable corpora mining methodologies by re- implementation of the comparison algorithms (using Needleman-Wunch algorithm), introduction of a tuning script and computation time improvement by GPU acceleration. Experiments are carried out on bilingual data extracted from the Wikipedia, on various domains. For the Wikipedia itself, additional cross-lingual comparison heuristics were introduced. The modifications made a positive impact on the quality and quantity of mined data and on the translation quality.
This paper describes our work in participation of the IWSLT-2021 offline speech translation task. Our system was built in a cascade form, including a speaker diarization module, an Automatic Speech Recognition (ASR) module and a Machine Translation (MT) module. We directly use the LIUM SpkDiarization tool as the diarization module. The ASR module is trained with three ASR datasets from different sources, by multi-source training, using a modified Transformer encoder. The MT module is pretrained on the large-scale WMT news translation dataset and fine-tuned on the TED corpus. Our method achieves 24.6 BLEU score on the 2021 test set.
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two approaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics, while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL-2014 benchmark and the JFLEG task. We provide systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.
The paper describes BUTs English to German offline speech translation(ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition-Machine Translation models. Their performances is evaluated on MustC-Common test set. In this work, we study their efficiency from the perspective of having a large amount of separate ASR training data and MT training data, and a smaller amount of speech-translation training data. Large amounts of ASR and MT training data are utilized for pre-training the ASR and MT models. Speech-translation data is used to jointly optimize ASR-MT models by defining an end-to-end differentiable path from speech to translations. For this purpose, we use the internal continuous representations from the ASR-decoder as the input to MT module. We show that speech translation can be further improved by training the ASR-decoder jointly with the MT-module using large amount of text-only MT training data. We also show significant improvements by training an ASR module capable of generating punctuated text, rather than leaving the punctuation task to the MT module.