No Arabic abstract
We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and $^{6}$LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector.
The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$). With a duty-cycle greater than 86% the detector collected about 5$times $10$^{11}$ events in a wide energy range, from few hundreds GeV up to about 10 PeV. A number of open problems in cosmic ray physics has been faced exploiting different analyses. In this paper we summarize the latest results in cosmic ray physics and in gamma-ray astronomy.
The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) ( about 6700 m^2}) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space-time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1-10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume. Since December 2009 the RPC charge readout has been in operation on the entire central carpet (about 5800 m^2). In this configuration the detector is able to measure the particle density at the core position where it ranges from tens to many thousands of particles per m^2. Thus ARGO-YBJ provides a highly detailed image of the charge component at the core of air showers. In this paper we describe the analog readout of RPCs in ARGO-YBJ and discuss both the performance of the system and the physical impact on the EAS measurements.
In any EAS array, the rejection of events with shower cores outside the detector boundaries is of great importance. A large difference between the true and the reconstructed shower core positions may lead to a systematic miscalculation of some shower characteristics. Moreover, an accurate determination of the shower core position for selected internal events is important to reconstruct the primary direction using conical fits to the shower front, improving the detector angular resolution, or to performe an efficient gamma/hadron discrimination. In this paper we present a procedure able to identify and reject showers with cores outside the ARGO-YBJ carpet boundaries. A comparison of the results for gamma and proton induced showers is reported.
The geomagnetic field causes not only the East-West effect on the primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched along certain directions. Thus both the density of the secondaries near the shower axis and the trigger efficiency of a detector array decrease. The effect depends on the age and on the direction of the showers, thus involving the measured azimuthal distribution. Here the non-uniformity of the azimuthal distribution of the reconstructed events in the ARGO-YBJ experiment is deeply investigated for different zenith angles on the light of this effect. The influence of the geomagnetic field as well as geometric effects are studied by means of a Monte Carlo simulation.