Do you want to publish a course? Click here

Weighing stars: the identification of an Evolved Blue Straggler Star in the globular cluster 47 Tucanae

56   0   0.0 ( 0 )
 Added by Barbara Lanzoni
 Publication date 2015
  fields Physics
and research's language is English
 Authors F.R. Ferraro




Ask ChatGPT about the research

Globular clusters are known to host peculiar objects, named Blue Straggler Stars (BSSs), significantly heavier than the normal stellar population. While these stars can be easily identified during their core hydrogen-burning phase, they are photometrically indistinguishable from their low-mass sisters in advanced stages of the subsequent evolution. A clear-cut identification of these objects would require the direct measurement of the stellar mass. We used the detailed comparison between chemical abundances derived from neutral and from ionized spectral lines as a powerful stellar weighing device to measure stellar mass and to identify an evolved BSS in 47 Tucanae. In particular, high-resolution spectra of three bright stars located slightly above the level of the canonical horizontal branch sequence in the color-magnitude diagram of 47 Tucanae, have been obtained with UVES spectrograph. The measurements of iron and titanium abundances performed separately from neutral and ionized lines reveal that two targets have stellar parameters fully consistent with those expected for low-mass post-horizontal branch objects, while for the other target the elemental ionization balance is obtained only by assuming a mass of ~1.4Msol, which is significantly larger than the main sequence turn-off mass of the cluster (~0.85 Msol). The comparison with theoretical stellar tracks suggests that this is a BSS descendant possibly experiencing its core helium-burning phase. The large applicability of the proposed method to most of the globular clusters in our Galaxy opens the possibility to initiate systematic searches for evolved BSSs, thus giving access to still unexplored phases of their evolution.

rate research

Read More

The Bright Star in the globular cluster 47 Tucanae (NGC 104) is a post-AGB star of spectral type B8 III. The ultraviolet spectra of late-B stars exhibit a myriad of absorption features, many due to species unobservable from the ground. The Bright Star thus represents a unique window into the chemistry of 47 Tuc. We have analyzed observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE), the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, and the MIKE Spectrograph on the Magellan Telescope. By fitting these data with synthetic spectra, we determine various stellar parameters (T_eff = 10,850 +/- 250 K, log g = 2.20 +/- 0.13) and the photospheric abundances of 26 elements, including Ne, P, Cl, Ga, Pd, In, Sn, Hg, and Pb, which have not previously been published for this cluster. Abundances of intermediate-mass elements (Mg through Ga) generally scale with Fe, while the heaviest elements (Pd through Pb) have roughly solar abundances. Its low C/O ratio indicates that the star did not undergo third dredge-up and suggests that its heavy elements were made by a previous generation of stars. If so, this pattern should be present throughout the cluster, not just in this star. Stellar-evolution models suggest that the Bright Star is powered by a He-burning shell, having left the AGB during or immediately after a thermal pulse. Its mass (0.54 +/- 0.16 M_sun) implies that single stars in 47 Tuc lose 0.1--0.2 M_sun on the AGB, only slightly less than they lose on the RGB.
128 - J. Kaluzny , M. Rozyczka , W. Pych 2013
Based on over 5400 BV images of 47 Tuc collected between 1998 and 2010 we obtained light curves of 65 variables, 21 of which are newly detected objects. New variables are located mostly just outside of the core in a region poorly studied by earlier surveys of the cluster. Among them there are four detached eclipsing binaries and five likely optical counterparts of X-ray sources. Two detached systems are promising targets for follow-up observations. We briefly discuss properties of the most interesting new variables.
We use Hubble Space Telescope multicolour photometry of the globular cluster 47 Tucanae to uncover a population of 24 objects with no previous classification that are outliers from the single-star model tracks in the colour-magnitude diagram and yet are likely cluster members. By comparing those sources with evolutionary models and X-ray source catalogues, we were able to show that the majority of those sources are likely binary systems that do not have any X-ray source detected nearby, most possibly formed by a white dwarf and a main-sequence star and a small number of possible double-degenerate systems.
ALMA observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ~1.2-3.5 x 10^-7 solar masses per year. We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
We have used multi-band high resolution HST WFPC2 and ACS observations combined with wide field ground-based observations to study the blue straggler star (BSS) population in the galactic globular cluster NGC 6388. As in several other clusters we have studied, the BSS distribution is found to be bimodal: highly peaked in the cluster center, rapidly decreasing at intermediate radii, and rising again at larger radii. In other clusters the sparsely populated intermediate-radius region (or ``zone of avoidance) corresponds well to that part of the cluster where dynamical friction would have caused the more massive BSS or their binary progenitors to settle to the cluster center. Instead, in NGC 6388, BSS still populate a region that should have been cleaned out by dynamical friction effects, thus suggesting that dynamical friction is somehow less efficient than expected. As by-product of these observations, the peculiar morphology of the horizontal branch (HB) is also confirmed. In particular, within the (very extended) blue portion of the HB we are able to clearly characterize three sub-populations: ordinary blue HB stars, extreme HB stars, and blue hook stars. Each of these populations has a radial distribution which is indistinguishable from normal cluster stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا