Do you want to publish a course? Click here

The MegaFace Benchmark: 1 Million Faces for Recognition at Scale

88   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Recent face recognition experiments on a major benchmark LFW show stunning performance--a number of algorithms achieve near to perfect score, surpassing human recognition rates. In this paper, we advocate evaluations at the million scale (LFW includes only 13K photos of 5K people). To this end, we have assembled the MegaFace dataset and created the first MegaFace challenge. Our dataset includes One Million photos that capture more than 690K different individuals. The challenge evaluates performance of algorithms with increasing numbers of distractors (going from 10 to 1M) in the gallery set. We present both identification and verification performance, evaluate performance with respect to pose and a persons age, and compare as a function of training data size (number of photos and people). We report results of state of the art and baseline algorithms. Our key observations are that testing at the million scale reveals big performance differences (of algorithms that perform similarly well on smaller scale) and that age invariant recognition as well as pose are still challenging for most. The MegaFace dataset, baseline code, and evaluation scripts, are all publicly released for further experimentations at: megaface.cs.washington.edu.



rate research

Read More

In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation protocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.
Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 white paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using deep features generated from a convolutional neural network. The k candidates are re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). Further, the proposed face search system offers an excellent trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed face search system could find the younger brothers (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.
The common implementation of face recognition systems as a cascade of a detection stage and a recognition or verification stage can cause problems beyond failures of the detector. When the detector succeeds, it can detect faces that cannot be recognized, no matter how capable the recognition system. Recognizability, a latent variable, should therefore be factored into the design and implementation of face recognition systems. We propose a measure of recognizability of a face image that leverages a key empirical observation: an embedding of face images, implemented by a deep neural network trained using mostly recognizable identities, induces a partition of the hypersphere whereby unrecognizable identities cluster together. This occurs regardless of the phenomenon that causes a face to be unrecognizable, it be optical or motion blur, partial occlusion, spatial quantization, poor illumination. Therefore, we use the distance from such an unrecognizable identity as a measure of recognizability, and incorporate it in the design of the over-all system. We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5 on the IJB-C Covariate Verification benchmark, and reduces verification error rate by 24% at FAR=1e-5 in set-based recognition on the IJB-C benchmark.
While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges that are relevant for practical applications. We introduce the Google Landmarks Dataset v2 (GLDv2), a new benchmark for large-scale, fine-grained instance recognition and image retrieval in the domain of human-made and natural landmarks. GLDv2 is the largest such dataset to date by a large margin, including over 5M images and 200k distinct instance labels. Its test set consists of 118k images with ground truth annotations for both the retrieval and recognition tasks. The ground truth construction involved over 800 hours of human annotator work. Our new dataset has several challenging properties inspired by real world applications that previous datasets did not consider: An extremely long-tailed class distribution, a large fraction of out-of-domain test photos and large intra-class variability. The dataset is sourced from Wikimedia Commons, the worlds largest crowdsourced collection of landmark photos. We provide baseline results for both recognition and retrieval tasks based on state-of-the-art methods as well as competitive results from a public challenge. We further demonstrate the suitability of the dataset for transfer learning by showing that image embeddings trained on it achieve competitive retrieval performance on independent datasets. The dataset images, ground-truth and metric scoring code are available at https://github.com/cvdfoundation/google-landmark.
Aerial scene recognition is a fundamental research problem in interpreting high-resolution aerial imagery. Over the past few years, most studies focus on classifying an image into one scene category, while in real-world scenarios, it is more often that a single image contains multiple scenes. Therefore, in this paper, we investigate a more practical yet underexplored task -- multi-scene recognition in single images. To this end, we create a large-scale dataset, called MultiScene, composed of 100,000 unconstrained high-resolution aerial images. Considering that manually labeling such images is extremely arduous, we resort to low-cost annotations from crowdsourcing platforms, e.g., OpenStreetMap (OSM). However, OSM data might suffer from incompleteness and incorrectness, which introduce noise into image labels. To address this issue, we visually inspect 14,000 images and correct their scene labels, yielding a subset of cleanly-annotated images, named MultiScene-Clean. With it, we can develop and evaluate deep networks for multi-scene recognition using clean data. Moreover, we provide crowdsourced annotations of all images for the purpose of studying network learning with noisy labels. We conduct experiments with extensive baseline models on both MultiScene-Clean and MultiScene to offer benchmarks for multi-scene recognition in single images and learning from noisy labels for this task, respectively. To facilitate progress, we make our dataset and trained models available on https://gitlab.lrz.de/ai4eo/reasoning/multiscene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا