NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta ($beta beta 0 u$) decay of Xe-136. The detector possesses two features of great value for $beta beta 0 u$ searches: energy resolution better than 1% FWHM at the $Q$ value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most $4times10^{-4}$ counts keV$^{-1}$ kg$^{-1}$ yr$^{-1}$. Accordingly, the detector will reach a sensitivity to the bbonu-decay half-life of $2.8times10^{25}$ years (90% CL) for an exposure of 100 $mathrm{kg}cdotmathrm{year}$, or $6.0times10^{25}$ years after a run of 3 effective years.