Do you want to publish a course? Click here

Dynamical considerations for life in multihabitable planetary systems

84   0   0.0 ( 0 )
 Added by Jason Steffen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by the close-proximity pair of planets in the Kepler-36 system, we consider two effects that may have important ramifications for the development of life in similar systems where a pair of planets may reside entirely in the habitable zone of the hosting star. Specifically, we run numerical simulations to determine whether strong, resonant (or non-resonant) planet-planet interactions can cause large variations in planet obliquity---thereby inducing large variations in climate. We also determine whether or not resonant interactions affect the rate of lithopanspermia between the planet pair---which could facilitate the growth and maintenance of life on both planets. We find that first-order resonances do not cause larger obliquity variations compared with non-resonant cases. We also find that resonant interactions are not a primary consideration in lithopanspermia. Lithopanspermia is enhanced significantly as the planet orbits come closer together---reaching nearly the same rate as ejected material falling back to the surface of the originating planet (assuming that the ejected material makes it out to the location of our initial conditions). Thus, in both cases our results indicate that close-proximity planet pairs in multihabitable systems are conducive to life in the system.



rate research

Read More

The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.
There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.
The search for extrasolar planets in the past decades has shown that planets abound in the Solar neighborhood. While we are still missing an Earth twin, the forthcoming space missions and ground-based instrumentation are already driven to achieve this goal. But, in order to fully understand the conditions for life appearing in the Solar System, we still miss some pieces of the planetary system jigsaw puzzle, namely a deeper understanding of the minor bodies. Trojans, moons, and comets are tracers of the formation and evolution processes of planetary systems. These missing pieces are also critical to understand the emergence and evolution of life over millions of years. With the large crop of planetary systems discovered so far and yet to be detected with the forthcoming missions, the hunt for minor bodies in extrasolar systems is a natural continuation of our search for real Solar System- and, in particular, Earth- analogs. This white paper is focused on detection of these minor components and their relevance in the emergence, evolution and survival of life.
150 - Laura Silva 2016
In an effort to derive temperature based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for their active metabolism and reproduction are bracketed by the temperature interval 0C<T<50C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We propose a habitability index for complex life, h050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0C<T<50C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h050 as a function of planet insolation S, and atmospheric columnar mass Natm, for a few earth-like atmospheric compositions. By displaying h050 as a function of S and Natm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life HZ is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life HZ is significantly narrower than the HZ of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and Natm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.
A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the belts is the presence of one or more planets dynamically carving it. This work aims to investigate this scenario in systems harboring two components debris disks. All the targets in the sample were observed with the SPHERE instrument which performs high-contrast direct imaging. Positions of the inner and outer belts were estimated by SED fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. The relation between the gap and the planet is due to the chaotic zone around the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis and on the eccentricity of the planet and it can be estimated analytically. We apply the formalism to the case of one planet on a circular or eccentric orbit. We then consider multi-planetary systems: 2 and 3 equal-mass planets on circular orbits and 2 equal-mass planets on eccentric orbits in a packed configuration. We then compare each couple of values (M,a), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on an eccentric orbits whose sizes are below the present detection limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا