No Arabic abstract
For a class of monadic deformations of the tangent bundles over nef-Fano smooth projective toric varieties, we study the correlators using quantum sheaf cohomology. We prove a summation formula for the correlators, confirming a conjecture by McOrist and Melnikov in physics literature. This generalizes the Szenes-Vergne proof of Toric Residue Mirror Conjecture for hypersurfaces.
Let the vector bundle $mathcal{E}$ be a deformation of the tangent bundle over the Grassmannian $G(k,n)$. We compute the ring structure of sheaf cohomology valued in exterior powers of $mathcal{E}$, also known as the polymology. This is the first part of a project studying the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle, a generalization of ordinary quantum cohomology rings of Grassmannians. A companion physics paper [arXiv:1512.08586] describes physical aspects of the theory, including a conjecture for the quantum sheaf cohomology ring, and numerous examples.
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring.
Hessenberg varieties are subvarieties of the flag variety parametrized by a linear operator $X$ and a nondecreasing function $h$. The family of Hessenberg varieties for regular $X$ is particularly important: they are used in quantum cohomology, in combinatorial and geometric representation theory, in Schubert calculus and affine Schubert calculus. We show that the classes of a regular Hessenberg variety in the cohomology and $K$-theory of the flag variety are given by making certain substitutions in the Schubert polynomial (respectively Grothendieck polynomial) for a permutation that depends only on $h$. Our formula and our methods are different from a recent result of Abe, Fujita, and Zeng that gives the class of a regular Hessenberg variety with more restrictions on $h$ than here.
We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. Finally, we prove that these dimensions form a one-parameter family of $1+1$-dimensional TQFT, uniquely classified by the complex Verlinde algebra, which is a one-parameter family of Frobenius algebras. We construct this one-parameter family of Frobenius algebras as a deformation of the classical Verlinde algebra for $G$.
We study the quantum sheaf cohomology of flag manifolds with deformations of the tangent bundle and use the ring structure to derive how the deformation transforms under the biholomorphic duality of flag manifolds. Realized as the OPE ring of A/2-twisted two-dimensional theories with (0,2) supersymmetry, quantum sheaf cohomology generalizes the notion of quantum cohomology. Complete descriptions of quantum sheaf cohomology have been obtained for abelian gauged linear sigma models (GLSMs) and for nonabelian GLSMs describing Grassmannians. In this paper we continue to explore the quantum sheaf cohomology of nonabelian theories. We first propose a method to compute the generating relations for (0,2) GLSMs with (2,2) locus. We apply this method to derive the quantum sheaf cohomology of products of Grassmannians and flag manifolds. The dual deformation associated with the biholomorphic duality gives rise to an explicit IR duality of two A/2-twisted (0,2) gauge theories.