Disentangling bipartite and core-periphery structure in financial networks


Abstract in English

A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles -SBM and dcSBM- allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.

Download