On Feasibility of 5G-Grade Dedicated RF Charging Technology for Wireless-Powered Wearables


Abstract in English

For decades, wireless energy transfer and harvesting remained of focused attention in the research community, but with limited practical applications. Recently, with the development of fifth-generation (5G) mobile technology, the concept of dedicated radio-frequency (RF) charging promises to support the growing market of wearable devices. In this work, we shed light on the potential of wireless RF power transfer by elaborating upon feasible system parameters and architecture, emphasizing the basic trade-offs behind omni-directional and directional out-of-band energy transmission, providing system-level performance evaluation, as well as discussing open challenges on the way to sustainable wireless-powered wearables. The key aspects highlighted in this article include system operation choices, user mobility effects, impact of network and user densities, as well as regulatory issues. Ultimately, our research targets to facilitate the integration of wireless RF charging technology into the emerging 5G ecosystem.

Download