Do you want to publish a course? Click here

Renyi entropy and conformal defects

85   0   0.0 ( 0 )
 Added by Lorenzo Bianchi
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezeis results for the entanglement entropy.



rate research

Read More

We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the entire parameter regions with respect to the replica number $n$ and the conformal dimension $h_O$ of the primary operator which creates the excitation. We numerically analyse relevant vacuum conformal blocks by using Zamolodchikovs recursion relation. We find that the behavior of the conformal blocks in two dimensional CFTs with a central charge $c$, drastically changes when the dimensions of external primary states reach the value $c/32$. In particular, when $h_Ogeq c/32$ and $ngeq 2$, we find a new universal formula $Delta S^{(n)}_Asimeq frac{nc}{24(n-1)}log t$. Our numerical results also confirm existing analytical results using the HHLL approximation.
We show that in any two dimensional conformal field theory with (2, 2) supersymmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit $n to1$ it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in string theory on $AdS_3$.
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the Lorentz group. The recipe yields the explicit structures in embedding space, and can be applied to any correlator of local operators, with or without a defect. We then focus on the two-point function of traceless symmetric primaries in the presence of a conformal defect, and explain how to compute the conformal blocks. In particular, we illustrate various techniques to generate the bulk channel blocks either from a radial expansion or by acting with differential operators on simpler seed blocks. For the defect channel, we detail a method to compute the blocks in closed form, in terms of projectors into mixed symmetry representations of the orthogonal group.
105 - Anirbit Mukherjee 2015
In this article we explore a certain definition of alternate quantization for the critical O(N) model. We elaborate on a prescription to evaluate the Renyi entropy of alternately quantized critical O(N) model. We show that there exists new saddles of the q-Renyi free energy functional corresponding to putting certain combinations of the Kaluza-Klein modes into alternate quantization. This leads us to an analysis of trying to determine the true state of the theory by trying to ascertain the global minima among these saddle points.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا