General de Finetti type theorems in noncommutative probability


Abstract in English

We prove general de Finetti type theorems for classical and free independence. The de Finetti type theorems work for all non-easy quantum groups, which generalize a recent work of Banica, Curran and Speicher. We determine maximal distributional symmetries which means the corresponding de Finetti type theorem fails if a sequence of random variables satisfy more symmetry relations other than the maximal one. In addition, we define Boolean quantum semigroups in analogous to the easy quantum groups, by universal conditions on matrix coordinate generators and an orthogonal projection. Then, we show a general de Finetti type theorem for Boolean independence.

Download