No Arabic abstract
Context: We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M104), NGC 4631, NGC 5457 (M101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended low surface brightness objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range $25.3lesssimmu_{e}lesssim28.8$ mag.arcsec$^{-2}$ and are fit with Sersic profiles with indices $nlesssim 1$. Assuming that they are in the vicinity of the above mentioned massive galaxies, their $r$-band absolute magnitudes, their effective radii, and their luminosities are in the ranges $-15.6 lesssim M_r lesssim -7.8$, 160 pc $lesssim R_e lesssim$ 4.1 kpc, and $0.1times 10^6 lesssimleft(frac{L}{L_{odot}}right)_rlesssim127 times 10^6$, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.
The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalized gravity models. Here, a nearby sample of isolated Milky Way class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. About 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulge-less. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4-m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC3669-DGSAT-3 and NGC7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC3625-DGSAT-4, belongs with a surface brightness of approximately 26 mag per arcsec^2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC3669-DGSAT-3, the galaxy with lowest surface brightness in our sample, may also be an UDG.
To enlarge the sample of known low-surface brightness (LSB) galaxies and to try to provide clues about their nature, we report the detection of eight of this type of objects ($mu_{{eff}, g} simeq 27$ mag arcsec$^{-2}$) towards the group of galaxies Pegasus I. They are located in the very center of Pegasus I, close to the dominant elliptical galaxies NGC7619 and NGC7626. Assuming that these galaxies are at the distance of Pegasus I, we have found that their sizes are intermediate among similar objects reported in the literature. In particular, we found that three of these galaxies can be classified as ultra-diffuse galaxies and a fourth one displays a nucleus. The eight new LSB galaxies show a significant color dispersion around the extrapolation towards faint luminosities of the color-magnitude relation defined by typical early-type galaxies. In addition, they display values of the Sersic index below 1, in agreement with values obtained for LSB galaxies in other environments. We also show that there seems to be a bias effect in the size distributions of the detected LSBs in different environments, in the sense that more distant groups/clusters lack small $r_{eff}$ objects, while large systems are not found in the Local Group and nearby environments. While there may be an actual shortage of large LSB galaxies in low-density environments like the Local Group, the non-detection of small (and faint) systems at large distances is clearly a selection effect. As an example, LSB galaxies with similar sizes to those of the satellites of Andromeda in the Local Group, will be certainly missed in a visual identification at the distance of Pegasus I.
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC5813 and NGC5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for IACTs [ABRIDGED]
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance due to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time, we investigated the origin of Low Surface Brightness (LSB) galaxies with M$_{star}$$sim$10$^{9.5-10}$M$_{odot}$, which we are able to reproduce within hydrodynamical cosmological simulations from the NIHAO suite. The simulated and observed LSBs share similar properties, having large HI reservoir, extended star formation histories and effective radii, low S{e}rsic index and slowly rising rotation curves. The formation mechanism of these objects is explored: simulated LSBs form as a result of co-planar co-rotating mergers and aligned accretion of gas at early times, while perpendicular mergers and mis-aligned gas accretion result in higher $mu$ galaxies by $z$=0. The larger the merger, the stronger the correlation between merger orbital configuration and final $mu$. While the halo spin parameter is consistently high in simulated LSB galaxies, the impact of halo concentration, feedback-driven gas outflows and merger time only plays a minor-to-no role in determining $mu$. Interestingly, the formation scenario of such `classical LSBs differs from the one of less massive, M$_{star}$$sim$10$^{7-9}$M$_{odot}$, Ultra-Diffuse Galaxies, the latter resulting from the effects of SNae driven gas outflows: a M$_{star}$ of $sim$10$^9$M$_{odot}$ thus represents the transition regime between a feedback-dominated to an angular momentum-dominated formation scenario in the LSB realm. Observational predictions are offered regarding spatially resolved star formation rates through LSB discs: these, together with upcoming surveys, can be used to verify the proposed emergence scenario of LSB galaxies.