Do you want to publish a course? Click here

Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

431   0   0.0 ( 0 )
 Added by Peter Woitke
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains) often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine some key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.



rate research

Read More

The European FP7 project DIANA has performed a coherent analysis of a large set of observations from protoplanetary disks by means of thermo-chemical disk models. The collected data include extinction-corrected stellar UV and X-ray input spectra (as seen by the disk), photometric fluxes, low and high resolution spectra, interferometric data, emission line fluxes, line velocity profiles and line maps. We define and apply a standardized modelling procedure to simultaneously fit all these data by state-of-the-art modelling codes (ProDiMo, MCFOST, MCMax) which solve the continuum and line radiative transfer, disk chemistry, and the heating & cooling balance for both the gas and the dust. We allow for up to two radial disk zones to obtain our best-fitting models that have about 20 free parameters. This approach is novel and unique in its completeness and level of consistency. In this paper, we present the results from pure SED fitting for 27 objects and from the all inclusive DIANA-standard models for 14 objects. We fit most infrared to millimeter emission line fluxes within a factor better than 3, simultaneously with SED, PAH features and radial brightness profiles extracted from images at various wavelengths. Our analysis shows a number of Herbig Ae and T Tauri stars with very cold and massive outer disks which are situated at least partly in the shadow of a tall and gas-rich inner disk. The disk masses derived are often in excess to previously published values, since these disks are partially optically thick even at millimeter wavelength and so cold that they emit less than in the Rayleigh-Jeans limit. Some line observations cannot be reproduced by the models, probably caused by foreground cloud absorption or object variability. Our data collection, the fitted physical disk parameters as well as the full model output are available at an online database (http://www.univie.ac.at/diana).
Aims. We define a small and large chemical network which can be used for the quantitative simultaneous analysis of molecular emission from the near-IR to the submm. We revise reactions of excited molecular hydrogen, which are not included in UMIST, to provide a homogeneous database for future applications. Methods. We use the thermo-chemical disk modeling code ProDiMo and a standard T Tauri disk model to evaluate the impact of various chemical networks, reaction rate databases and sets of adsorption energies on a large sample of chemical species and emerging line fluxes from the near-IR to the submm wavelength range. Results. We find large differences in the masses and radial distribution of ice reservoirs when considering freeze-out on bare or polar ice coated grains. Most strongly the ammonia ice mass and the location of the snow line (water) change. As a consequence molecules associated to the ice lines such as N2H+ change their emitting region; none of the line fluxes in the sample considered here changes by more than 25% except CO isotopologues, CN and N2H+ lines. The three-body reaction N+H2+M plays a key role in the formation of water in the outer disk. Besides that, differences between the UMIST 2006 and 2012 database change line fluxes in the sample considered here by less than a factor 2 (a subset of low excitation CO and fine structure lines stays even within 25%); exceptions are OH, CN, HCN, HCO+ and N2H+ lines. However, different networks such as OSU and KIDA 2011 lead to pronounced differences in the chemistry inside 100 au and thus affect emission lines from high excitation CO, OH and CN lines. H2 is easily excited at the disk surface and state-to-state reactions enhance the abundance of CH+ and to a lesser extent HCO+. For sub-mm lines of HCN, N2H+ and HCO+, a more complex larger network is recommended. ABBREVIATED
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In this work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
459 - O. Dionatos 2019
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that can provide a complete description of the physical and chemical properties and energy balance of protoplanetary systems. Along these lines we present a homogeneous, panchromatic collection of data on a sample of 85 T Tauri and Herbig Ae objects for which data cover a range from X-rays to centimeter wavelengths. Datasets consist of photometric measurements, spectra, along with results from the data analysis such as line fluxes from atomic and molecular transitions. Additional properties resulting from modeling of the sources such as disc mass and shape parameters. dust size and PAH properties are also provided for completeness. Targets were selected based on their properties data availability. Data from more than 50 different telescopes and facilities were retrieved and combined in homogeneous datasets directly from public data archives or after being extracted from more than 100 published articles. X-ray data for a subset of 56 sources represent an exception as they were reduced from scratch and are presented here for the first time. Compiled datasets along with a subset of continuum and emission-line models are stored in a dedicated database and distributed through a publicly accessible online system. All datasets contain metadata descriptors that allow to backtrack them to their original resources. The graphical user interface of the online system allows the user to visually inspect individual objects but also compare between datasets and models. It also offers to the user the possibility to download any of the stored data and metadata for further processing.
473 - A. Riols , B. Roux , H. Latter 2020
Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs. Apart from facilitating gas accretion on to the central protostar, it must also impact on the process of planet formation: directly through fragmentation, and indirectly through the turbulent concentration of small solids. To understand the latter process, it is essential to determine the dust dynamics in such a turbulent flow. For that purpose, we conduct a series of 3D shearing box simulations of coupled gas and dust, including the gass self-gravity and scanning a range of Stokes numbers, from 0.001 to ~0.2. First, we show that the vertical settling of dust in the midplane is significantly impeded by gravitoturbulence, with the dust scale-height roughly 0.6 times the gas scale height for centimetre grains. This is a result of the strong vertical diffusion issuing from (a) small-scale inertial-wave turbulence feeding off the GI spiral waves and (b) the larger-scale vertical circulations that naturally accompany the spirals. Second, we show that at R=50 AU concentration events involving sub-metre particles and yielding order 1 dust to gas ratios are rare and last for less than an orbit. Moreover, dust concentration is less efficient in 3D than in 2D simulations. We conclude that GI is not especially prone to the turbulent accumulation of dust grains. Finally, the large dust scale-height measured in simulations could be, in the future, compared with that of edge-on discs seen by ALMA, thus aiding detection and characterisation of GI in real systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا