Do you want to publish a course? Click here

Target and Double Spin Asymmetries of Deeply Virtual $pi^0$ Production with a Longitudinally Polarized Proton Target and CLAS

86   0   0.0 ( 0 )
 Added by Andrey Kim
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The target and double spin asymmetries of the exclusive pseudoscalar channel $vec evec pto eppi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $x_B$, $-t$ and $phi$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $tilde{H}_T$ and $E_T$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $H_T$ and $bar E_T$. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.



rate research

Read More

Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero.
Double-spin asymmetries in exclusive electroproduction of real photons from a transversely polarized hydrogen target are measured with respect to the product of target polarization with beam helicity and beam charge, and with respect to the product of target polarization with beam helicity alone. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe--Heitler process. They are related to the real part of the same combination of Compton form factors as that determining the previously published transverse target single-spin asymmetries through the imaginary part. The results for the double-spin asymmetries are found to be compatible with zero within the uncertainties of the measurement, and are not incompatible with the predictions of the only available GPD-based calculation.
146 - Silvia Niccolai 2012
This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.
We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $sin2phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.
137 - E. Seder , A. Biselli , S. Pisano 2014
A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for $epto epgamma$ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in $Q^2$, $x_B$, $t$ and $phi$, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the $t$ dependence of these asymmetries provides insight on the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا