No Arabic abstract
We propose a new possible explanation of the ATLAS di-boson excess: that it is due to heavy resonant slepton production, followed by decay into di-smuons. The smuon has a mass not too far from the W and Z masses, and so it is easily confused with W or Z bosons after its subsequent decay into di-jets, through a supersymmetry violating and R-parity violating interaction. Such a scenario is not currently excluded by other constraints and remains to be definitively tested in Run II of the LHC. Such light smuons can easily simultaneously explain the discrepancy between the measurement of the anomalous magnetic moment of the muon and the Standard Model prediction.
We explore several perturbative scenarios in which the di-photon excess at 750 GeV can potentially be explained: a scalar singlet, a two Higgs doublet model (2HDM), a 2HDM with an extra singlet, and the decays of heavier resonances, both vector and scalar. We draw the following conclusions: (i) due to gauge invariance a 750 GeV scalar singlet can accommodate the observed excess more readily than a scalar SU(2)_L doublet; (ii) scalar singlet production via gluon fusion is one option, however, vector boson fusion can also provide a large enough rate, (iii) 2HDMs with an extra singlet and no extra fermions can only give a signal in a severely tuned region of the parameter space; (iv) decays of heavier resonances can give a large enough di-photon signal at 750 GeV, while simultaneously explaining the absence of a signal at 8 TeV.
A recent CMS search for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown a 2.8$sigma$ excess around $m_{eejj} sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an $mathcal{R}-$parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay ($0 u beta beta$) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.
We study the possibility of explaining the recently reported 750 GeV di-photon excess at LHC within the framework of a left-right symmetric model. The 750 GeV neutral scalar in the model is dominantly an admixture of neutral components of scalar bidoublets with a tiny fraction of neutral scalar triplet. Incorporating $SU(2)$ septuplet scalar pairs into the model, we enhance the partial decay width of the 750 GeV neutral scalar into di-photons through charged septuplet components in loop while keeping the neutral septuplet components as subdominant dark matter candidates. The model also predicts the decay width of the 750 GeV scalar to be around 36 GeV to be either confirmed or ruled out by future LHC data. The requirement of producing the correct di-photon signal automatically keeps the septuplet dark matter abundance subdominant in agreement with bounds from direct and indirect detection experiments. We then briefly discuss different possibilities to account for the remaining dark matter component of the Universe in terms of other particle candidates whose stability arise either due to remnant discrete symmetry after spontaneous breaking of $U(1)_{B-L}$ or due to high $SU(2)$-dimension forbidding their decay into lighter particles.
The search for di-Higgs final states is typically limited at the LHC to the dominant gluon fusion channels, with weak boson fusion only assuming a spectator role. In this work, we demonstrate that when it comes to searches for resonant structures that arise from iso-singlet mixing in the Higgs sector, the weak boson fusion sideline can indeed contribute to winning the discovery game. Extending existing experimental resonance searches by including both contributions is therefore crucial.
We demonstrate that the $3sigma$ excess observed by ATLAS in the Z + MET channel can be explained within the context of the MSSM. Using the freedom inherent in the pMSSM, we perform a detailed analysis of the parameter space and find a scenario that describes the excess while simultaneously complying with all other search constraints from the Run I data at 7 and 8 TeV, including the Z + MET analysis by CMS. We generate a small sample of simplified models, using promising models from our existing pMSSM sample as seeds, and study their properties. The successful region is described by the production of 1st/2nd generation squark pairs, followed by their decay into a bino-like neutralino which in turn decays into a Higgsino-like LSP triplet by emitting a Z boson, i.e., $tilde qtotilde Btotilde h$ with $tilde q = tilde Q_L,tilde u_R,$ or $tilde d_R$. The sweet spot for the sparticle spectrum is found to have squark masses in the 500-750 GeV range, with bino masses near 350 GeV with a mass splitting of 150-200 GeV with the Higgsino LSP. If this excess holds, then this scenario predicts that a signal will be observed in the 0l + jets and/or 1l + jets searches in the early operations of Run II.