Do you want to publish a course? Click here

Luminescence of photochromic centers in calcium fluoride crystals doped with Lu$^{3+}$ ions

65   0   0.0 ( 0 )
 Added by Roman Shendrik
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report data on the luminescence spectra associated with photochromic centers in X-ray irradiated calcium fluoride crystals doped with Lu ions. Irradiation in low energy photochromic centers absorption band excites emission, which can be identify with transitions into photochromic centers. Ab initio calculation of absorption spectrum of photochromic center agrees rather well with experimental data.



rate research

Read More

A comparative first-principles study of possible bismuth-related centers in TlCl and CsI crystals is performed and the results of computer modeling are compared with the experimental data. The calculated spectral properties of the bismuth centers suggest that the IR luminescence observed in TlCl:Bi is most likely caused by Bi--Vac(Cl) centers (Bi^+ ion in thallium site and a negatively charged chlorine vacancy in the nearest anion site). On the contrary, Bi^+ substitutional ions and Bi_2^+ dimers are most likely responsible for the IR luminescence observed in CsI:Bi.
We have studied the absorption spectra of x-ray irradiation-induced Ce2+ and Pr2+ ions in crystals of alkaline-earth fluorides. We have calculated absorption spectra of divalent praseodymium ions in SrF2 crystals doped with Pr2+ for the first time. The calculated spectra agree rather well with the experimental data. In crystals containing induced Ce2+ ions we have found strong electron-phonon coupling. In BaF2, we do not observe bands corresponded to divalent Ce or Pr ions.
The crystal growth procedure and luminescence properties of pure and Eu$^{2+}$-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu$^{2+}$ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu$^{2+}$ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
Experimental and computer-modeling studies of spectral properties of crystalline AgCl doped with metal bismuth or bismuth chloride are performed. Broad near-IR luminescence band in the 0.8--1.2mkm range with time dependence described by two exponential components corresponding to the lifetimes of 1.5 and 10.3mks is excited mainly by 0.39--0.44mkm radiation. Computer modeling of probable Bi-related centers in AgCl lattice is performed. On the basis of experimental and calculation data a conclusion is drawn that the IR luminescence can be caused by Bi^+ ion centers substituted for Ag^+ ions.
Subvalent bismuth centers (interstitial $Bi^{+}$ ion, Bi$_5^{3+}$ cluster ion, and Bi$_4^0$ cluster) are examined as possible centers of broadband near-IR luminescence in bismuth-doped solids on the grounds of quantum-chemical modeling and experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا