In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is implemented in the computer algebra system Maple.
We give two efficient methods to derive Pfaffian systems for A-hypergeometric systems for the application to the holonomic gradient method for statistics. We utilize the Hilbert driven Buchberger algorithm and Macaulay type matrices in the two methods.
Here we present some compliments to theorems of Gerard and Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the most known results concern completely integrable systems with nondegenerate linear parts, whereas we consider some cases of non-integrability and degeneracy.
This paper is concerned with certifying that a given point is near an exact root of an overdetermined or singular polynomial system with rational coefficients. The difficulty lies in the fact that consistency of overdetermined systems is not a continuous property. Our certification is based on hybrid symbolic-numeric methods to compute the exact rational univariate representation (RUR) of a component of the input system from approximate roots. For overdetermined polynomial systems with simple roots, we compute an initial RUR from approximate roots. The accuracy of the RUR is increased via Newton iterations until the exact RUR is found, which we certify using exact arithmetic. Since the RUR is well-constrained, we can use it to certify the given approximate roots using alpha-theory. To certify isolated singular roots, we use a determinantal form of the isosingular deflation, which adds new polynomials to the original system without introducing new variables. The resulting polynomial system is overdetermined, but the roots are now simple, thereby reducing the problem to the overdetermined case. We prove that our algorithms have complexity that are polynomial in the input plus the output size upon successful convergence, and we use worst case upper bounds for termination when our iteration does not converge to an exact RUR. Examples are included to demonstrate the approach.
We use local Hamiltonian torus actions to degenerate a symplectic manifold to a normal crossings symplectic variety in a smooth one-parameter family. This construction, motivated in part by the Gross-Siebert and B. Parkers programs, contains a multifold version of the usual (two-fold) symplectic cut construction and in particular splits a symplectic manifold into several symplectic manifolds containing normal crossings symplectic divisors with shared irreducible components in one step.
Skew-orthogonal polynomials (SOPs) arise in the study of the n-point distribution function for orthogonal and symplectic random matrix ensembles. Motivated by the average of characteristic polynomials of the Bures random matrix ensemble studied in [22], we propose the concept of partial-skew-orthogonal polynomials (PSOPs) as a modification of the SOPs, and then the PSOPs with a variety of special skew-symmetric kernels and weight functions are addressed. By considering appropriate deformations of the weight functions, we derive nine integrable lattices in different dimensions. As a consequence, the tau-functions for these systems are shown to be expressed in terms of Pfaffians and the wave vectors PSOPs. In fact, the tau-functions also admit the representations of multiple integrals. Among these integrable lattices, some of them are known, while the others are novel to the best of our knowledge. In particular, one integrable lattice is related to the partition function of the Bures random matrix ensemble. Besides, we derive a discrete integrable lattice, which can be used to compute certain vector Pade approximants. This yields the first example regarding the connection between integrable lattices and vector Pade approximants, for which Hietarinta, Joshi and Nijhoff pointed out that This field remains largely to be explored. in the recent monograph [27, Section 4.4] .
Moulay A. Barkatou
,Maximilian Jaroschek
,Suzy S. Maddah
.
(2015)
.
"Formal Solutions of Completely Integrable Pfaffian Systems With Normal Crossings"
.
Maximilian Jaroschek
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا