Submatrix localization via message passing


Abstract in English

The principal submatrix localization problem deals with recovering a $Ktimes K$ principal submatrix of elevated mean $mu$ in a large $ntimes n$ symmetric matrix subject to additive standard Gaussian noise. This problem serves as a prototypical example for community detection, in which the community corresponds to the support of the submatrix. The main result of this paper is that in the regime $Omega(sqrt{n}) leq K leq o(n)$, the support of the submatrix can be weakly recovered (with $o(K)$ misclassification errors on average) by an optimized message passing algorithm if $lambda = mu^2K^2/n$, the signal-to-noise ratio, exceeds $1/e$. This extends a result by Deshpande and Montanari previously obtained for $K=Theta(sqrt{n}).$ In addition, the algorithm can be extended to provide exact recovery whenever information-theoretically possible and achieve the information limit of exact recovery as long as $K geq frac{n}{log n} (frac{1}{8e} + o(1))$. The total running time of the algorithm is $O(n^2log n)$. Another version of the submatrix localization problem, known as noisy biclustering, aims to recover a $K_1times K_2$ submatrix of elevated mean $mu$ in a large $n_1times n_2$ Gaussian matrix. The optimized message passing algorithm and its analysis are adapted to the bicluster problem assuming $Omega(sqrt{n_i}) leq K_i leq o(n_i)$ and $K_1asymp K_2.$ A sharp information-theoretic condition for the weak recovery of both clusters is also identified.

Download