Gauge Symmetry in the Large-amplitude Collective Motion of Superfluid Nuclei


Abstract in English

The adiabatic self-consistent collective coordinate (ASCC) method is a practical method for the description of large-amplitude collective motion in atomic nuclei with superfluidity and an advanced version of the adiabatic time-dependent Hartree-Fock-Bogoliubov theory. We investigate the gauge symmetry in the ASCC method on the basis of the theory of constrained systems. The gauge symmetry in the ASCC method is originated from the constraint on the particle number in the collective Hamiltonian, and it is partially broken by the adiabatic expansion. The validity of the adiabatic expansion under the general gauge transformation is also discussed.

Download