Do you want to publish a course? Click here

Reviewer Integration and Performance Measurement for Malware Detection

94   0   0.0 ( 0 )
 Added by Alex Kantchelian
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We present and evaluate a large-scale malware detection system integrating machine learning with expert reviewers, treating reviewers as a limited labeling resource. We demonstrate that even in small numbers, reviewers can vastly improve the systems ability to keep pace with evolving threats. We conduct our evaluation on a sample of VirusTotal submissions spanning 2.5 years and containing 1.1 million binaries with 778GB of raw feature data. Without reviewer assistance, we achieve 72% detection at a 0.5% false positive rate, performing comparable to the best vendors on VirusTotal. Given a budget of 80 accurate reviews daily, we improve detection to 89% and are able to detect 42% of malicious binaries undetected upon initial submission to VirusTotal. Additionally, we identify a previously unnoticed temporal inconsistency in the labeling of training datasets. We compare the impact of training labels obtained at the same time training data is first seen with training labels obtained months later. We find that using training labels obtained well after samples appear, and thus unavailable in practice for current training data, inflates measured detection by almost 20 percentage points. We release our cluster-based implementation, as well as a list of all hashes in our evaluation and 3% of our entire dataset.



rate research

Read More

Currently, Android malware detection is mostly performed on server side against the increasing number of malware. Powerful computing resource provides more exhaustive protection for app markets than maintaining detection by a single user. However, apart from the applications provided by the official market, apps from unofficial markets and third-party resources are always causing serious security threats to end-users. Meanwhile, it is a time-consuming task if the app is downloaded first and then uploaded to the server side for detection, because the network transmission has a lot of overhead. In addition, the uploading process also suffers from the security threats of attackers. Consequently, a last line of defense on mobile devices is necessary and much-needed. In this paper, we propose an effective Android malware detection system, MobiTive, leveraging customized deep neural networks to provide a real-time and responsive detection environment on mobile devices. MobiTive is a preinstalled solution rather than an app scanning and monitoring engine using after installation, which is more practical and secure. Original deep learning models cannot be directly deployed and executed on mobile devices due to various performance limitations, such as computation power, memory size, and energy. Therefore, we evaluate and investigate the following key points:(1) the performance of different feature extraction methods based on source code or binary code;(2) the performance of different feature type selections for deep learning on mobile devices;(3) the detection accuracy of different deep neural networks on mobile devices;(4) the real-time detection performance and accuracy on different mobile devices;(5) the potential based on the evolution trend of mobile devices specifications; and finally we further propose a practical solution (MobiTive) to detect Android malware on mobile devices.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.
Deep learning has been used in the research of malware analysis. Most classification methods use either static analysis features or dynamic analysis features for malware family classification, and rarely combine them as classification features and also no extra effort is spent integrating the two types of features. In this paper, we combine static and dynamic analysis features with deep neural networks for Windows malware classification. We develop several methods to generate static and dynamic analysis features to classify malware in different ways. Given these features, we conduct experiments with composite neural network, showing that the proposed approach performs best with an accuracy of 83.17% on a total of 80 malware families with 4519 malware samples. Additionally, we show that using integrated features for malware family classification outperforms using static features or dynamic features alone. We show how static and dynamic features complement each other for malware classification.
138 - Paul Maxwell , David Niblick , 2020
Cybersecurity continues to be a difficult issue for society especially as the number of networked systems grows. Techniques to protect these systems range from rules-based to artificial intelligence-based intrusion detection systems and anti-virus tools. These systems rely upon the information contained in the network packets and download executables to function. Side channel information leaked from hardware has been shown to reveal secret information in systems such as encryption keys. This work demonstrates that side channel information can be used to detect malware running on a computing platform without access to the code involved.
96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attackers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا