In this paper, we investigate conformal Killings vectors (CKVs) admitted by some plane symmetric spacetimes. Ten conformal Killings equations and their general forms of CKVs are derived along with their conformal factor. The existence of conformal Killings symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. Considering the cases of time-like and inheriting CKVs, we obtain spacetimes admitting plane conformal symmetry. Integrability conditions are solved completely for some known non-conformally flat and conformally flat classes of plane symmetric spacetimes. A special vacuum plane symmetric spacetime is obtained, and it is shown that for such a metric CKVs are just the homothetic vectors (HVs). Among all the examples considered, there exists only one case with a six dimensional algebra of special CKVs admitting one proper CKV. In all other examples of non-conformally flat metrics, no proper CKV is found and CKVs are either HVs or Killings vectors (KVs). In each of the three cases of conformally flat metrics, a fifteen dimensional algebra of CKVs is obtained of which eight are proper CKVs.