No Arabic abstract
We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.
We calculate pion vector and scalar form factors in two-flavor lattice QCD and study the chiral behavior of the vector and scalar radii <r^2>_{V,S}. Numerical simulations are carried out on a 16^3 x 32 lattice at a lattice spacing of 0.12 fm with quark masses down to sim m_s/6, where m_s is the physical strange quark mass. Chiral symmetry, which is essential for a direct comparison with chiral perturbation theory (ChPT), is exactly preserved in our calculation at finite lattice spacing by employing the overlap quark action. We utilize the so-called all-to-all quark propagator in order to calculate the scalar form factor including the contributions of disconnected diagrams and to improve statistical accuracy of the form factors. A detailed comparison with ChPT reveals that the next-to-next-to-leading-order contributions to the radii are essential to describe their chiral behavior in the region of quark mass from m_s/6 to m_s/2. Chiral extrapolation based on two-loop ChPT yields <r^2>_V=0.409(23)(37)fm and <r^2>_S=0.617(79)(66)fm, which are consistent with phenomenological analysis. We also present our estimates of relevant low-energy constants.
We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.
Lattice QCD can provide a direct determination of meson electromagnetic form factors, making predictions for upcoming experiments at Jefferson Lab. The form factors are a reflection of the bound-state nature of the meson and so these calculations give information about how confinement by QCD affects meson internal structure. The region of high squared (space-like) momentum-transfer, $Q^2$, is of particular interest because perturbative QCD predictions take a simple form in that limit that depends on the meson decay constant. We previously showed incite{jonnaff} that, up to $Q^2$ of 6 $mathrm{GeV}^2$, the form factor for a `pseudo-pion made of strange quarks was significantly larger than the asymptotic perturbative QCD result and showed no sign of heading towards that value at higher $Q^2$. Here we give predictions for real mesons, the $K^+$ and $K^0$, in anticipation of JLAB results for the $K^+$ in the next few years. We also give results for a heavier meson, the $eta_c$, up to $Q^2$ of 25 $mathrm{GeV}^2$ for a comparison to perturbative QCD in a higher $Q^2$ regime.
We calculate the kaon semileptonic form factors in lattice QCD with three flavors of dynamical overlap quarks. Gauge ensembles are generated at pion masses as low as 290 MeV and at a strange quark mass near its physical value. We precisely calculate relevant meson correlators using the all-to-all quark propagator. Twisted boundary conditions and the reweighting technique are employed to vary the momentum transfer and the strange quark mass. We discuss the chiral behavior of the form factors by comparing with chiral perturbation theory and experiments.
We report on our calculation of the kaon semileptonic form factors in Nf=2+1 lattice QCD. Chiral symmetry is exactly preserved by using the overlap quark action for a straightforward comparison with chiral perturbation theory (ChPT). We simulate three pion masses down to 290 MeV at a single lattice spacing of 0.11 fm and at a strange quark mass very close to its physical value. The form factors near zero momentum transfer are precisely calculated by using the all-to-all propagator and twisted boundary conditions. We compare the normalizations and slopes of the form factors with ChPT and experiments.