Do you want to publish a course? Click here

Uniform estimates for the Penalized Boundary Obstacle Problem

145   0   0.0 ( 0 )
 Added by Rohit Jain
 Publication date 2015
  fields
and research's language is English
 Authors Rohit Jain




Ask ChatGPT about the research

In this paper, motivated by a problem arising in random homogenization theory, we initiate the study of uniform estimates for the fractional penalized obstacle problem, $ Delta^{s}u^{epsilon} = beta_{epsilon} (u^{epsilon})$. In particular we consider the penalized boundary obstacle problem, $s = frac{1}{2}$, and obtain sharp estimates for the solution independent of the penalizing parameter $epsilon$. This is a generalization of a result due to H. Brezis and D. Kinderlehrer.

rate research

Read More

In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establishes that, when $s>frac12$, the free boundary is a $C^{1,alpha}$ graph in $x$ and $t$ near any regular free boundary point $(x_0,t_0)in partial{u>varphi}$. Furthermore, we also prove that solutions $u$ are $C^{1+s}$ in $x$ and $t$ near such points, with a precise expansion of the form [u(x,t)-varphi(x)=c_0bigl((x-x_0)cdot e+a(t-t_0)bigr)_+^{1+s}+obigl(|x-x_0|^{1+s+alpha}+ |t-t_0|^{1+s+alpha}bigr),] with $c_0>0$, $ein mathbb{S}^{n-1}$, and $a>0$.
We prove a higher regularity result for the free boundary in the obstacle problem for the fractional Laplacian via a higher order boundary Harnack inequality.
We study the regularity of the free boundary in the obstacle for the $p$-Laplacian, $minbigl{-Delta_p u,,u-varphibigr}=0$ in $Omegasubsetmathbb R^n$. Here, $Delta_p u=textrm{div}bigl(| abla u|^{p-2} abla ubigr)$, and $pin(1,2)cup(2,infty)$. Near those free boundary points where $ abla varphi eq0$, the operator $Delta_p$ is uniformly elliptic and smooth, and hence the free boundary is well understood. However, when $ abla varphi=0$ then $Delta_p$ is singular or degenerate, and nothing was known about the regularity of the free boundary at those points. Here we study the regularity of the free boundary where $ abla varphi=0$. On the one hand, for every $p eq2$ we construct explicit global $2$-homogeneous solutions to the $p$-Laplacian obstacle problem whose free boundaries have a corner at the origin. In particular, we show that the free boundary is in general not $C^1$ at points where $ abla varphi=0$. On the other hand, under the concavity assumption $| abla varphi|^{2-p}Delta_p varphi<0$, we show the free boundary is countably $(n-1)$-rectifiable and we prove a nondegeneracy property for $u$ at all free boundary points.
In this paper we give a full classification of global solutions of the obstacle problem for the fractional Laplacian (including the thin obstacle problem) with compact coincidence set and at most polynomial growth in dimension $N geq 3$. We do this in terms of a bijection onto a set of polynomials describing the asymptotics of the solution. Furthermore we prove that coincidence sets of global solutions that are compact are also convex if the solution has at most quadratic growth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا