Do you want to publish a course? Click here

Keck and VLT Observations of Super-damped Lyman-alpha Absorbers at z=2=2.5: Constraints on Chemical Compositions and Physical Conditions

286   0   0.0 ( 0 )
 Added by Varsha P. Kulkarni
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Keck/ESI and VLT/UVES observations of three super-damped Lyman-alpha quasar absorbers with H I column densities log N(HI) >= 21.7 at redshifts z=2-2.5. All three absorbers show similar metallicities (-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other DLAs to examine trends between N(HI), metallicity, dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H]=20.59-log N(HI) in the metallicity vs. N(HI) plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N(HI) < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Ly-alpha emission, implying star formation rates of about 1.6 and 0.7 solar masses per year, respectively (ignoring dust extinction). Upper limits on the electron densities from C II*/C II or Si II*/Si II are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N(HI) > 21.7 may have somewhat narrower velocity dispersions delta v_90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.



rate research

Read More

We report the detections of molecular hydrogen (H$_2$), vibrationally-excited H$_2$ (H$^*_2$), and neutral atomic carbon (CI), in two new afterglow spectra of GRBs,181020A ($z=2.938$) and 190114A ($z=3.376$), observed with X-shooter at the Very Large Telescope (VLT). Both host-galaxy absorption systems are characterized by strong damped Lyman-$alpha$ absorbers (DLAs) and substantial amounts of molecular hydrogen with $log N$(HI, H$_2$) = $22.20pm 0.05,~20.40pm 0.04$ (GRB,181020A) and $log N$(HI, H$_2$) = $22.15pm 0.05,~19.44pm 0.04$ (GRB,190114A). The DLA metallicites, depletion levels and dust extinctions are [Zn/H] = $-1.57pm 0.06$, [Zn/Fe] = $0.67pm 0.03$, and $A_V = 0.27pm 0.02$,mag (GRB,181020A) and [Zn/H] = $-1.23pm 0.07$, [Zn/Fe] = $1.06pm 0.08$, and $A_V = 0.36pm 0.02$,mag (GRB,190114A). We then examine the molecular gas content of all known H$_2$-bearing GRB-DLAs and explore the physical conditions and characteristics of these systems. We confirm that H$_2$ is detected in all CI- and H$^*_2$-bearing GRB absorption systems, but that these rarer features are not necessarily detected in all GRB H$_2$ absorbers. We find that a large molecular fraction of $f_{rm H_2} gtrsim 10^{-3}$ is required for CI to be detected. The defining characteristic for H$^*_2$ to be present is less clear, though a large H$_2$ column density is an essential factor. We then derive the H$_2$ excitation temperatures of the molecular gas and find that they are relatively low with $T_{rm ex} approx 100 - 300$,K, however, there could be evidence of warmer components populating the high-$J$ H$_2$ levels in GRBs,181020A and 190114A. Finally, we demonstrate that the otherwise successful X-shooter GRB afterglow campaign is hampered by a significant dust bias excluding the most dust-obscured H$_2$ absorbers from identification [Abridged].
542 - Debopam Som 2015
We report observations of four sub-damped Lyman-alpha (sub-DLA) quasar absorbers at z<0.5 obtained with the Hubble Space Telescope Cosmic Origins Spectrograph. We measure the available neutrals or ions of C, N, O, Si, P, S, Ar, Mn, Fe, and/or Ni. Our data have doubled the sub-DLA metallicity samples at z<0.5 and improved constraints on sub-DLA chemical evolution. All four of our sub-DLAs are consistent with near-solar or super-solar metallicities and relatively modest ionization corrections; observations of more lines and detailed modeling will help to verify this. Combining our data with measurements from the literature, we confirm previous suggestions that the N(HI)-weighted mean metallicity of sub-DLAs exceeds that of DLAs at all redshifts studied, even after making ionization corrections for sub-DLAs. The absorber toward PHL 1598 shows significant dust depletion. The absorbers toward PHL 1226 and PKS 0439-433 show the S/P ratio consistent with solar, i.e., they lack a profound odd-even effect. The absorber toward Q0439-433 shows super-solar Mn/Fe. For several sub-DLAs at z<0.5, [N/S] is below the level expected for secondary N production, suggesting a delay in the release of the secondary N or a tertiary N production mechanism. We constrain the electron density using Si II* and C II* absorption. We also report different metallicity vs. Delta V_90 relations for sub-DLAs and DLAs. For two sub-DLAs with detections of emission lines from the underlying galaxies, our measurements of the absorption-line metallicities are consistent with the emission-line metallicities, suggesting that metallicity gradients are not significant in these galaxies.
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean metallicity in the Universe and its evolution with time. Paradoxically, these observations are more difficult at lower redshifts, where the absorber rest-frame UV spectra are cut-off due to the atmospheric absorption. We present here high-resolution VLT/UVES observations of several elements contained in three DLAs and one sub-DLA with 0.6<z_abs<0.9. We detect Mg I, Mg II, Fe II, Zn II, Cr II, Mn II, Ti II and Ca II. Our observations more than double the high-resolution sample of [Zn/H] at z<1. We also report the discovery of three metal-rich systems, whereas most previous measurements show low N(HI)-weighted mean metallicity projecting to about 1/6th solar level at z=0. We derive [Zn/H]=-0.11+/-0.04 at z_abs=0.725, [Zn/H]=-0.54+/-0.20 at z_abs=0.740 and [Zn/H]=-0.49+/-0.22 at z_abs=0.652, plus one additional upper limit ([Zn/H]<-0.36 at z_abs=0.842). These measurements confirm the existence of quasar absorbers with relatively high metallicities based on abundance estimates free from the effect of dust depletion. Possible implications of these results for the metallicity of neutral gas phase in the past ~ 8 Gyr are presented and compared with models.
51 - Celine Peroux 2004
The Damped Lyman-alpha systems (DLAs), seen in absorption in the spectrum of quasars, are believed to contain a large fraction of the neutral gas in the Universe. Paradoxically, these systems are more difficult to observe at z_abs<1.7, since they are rare and their HI feature then falls in UV spectra. Rao & Turnshek (2000) pioneered a method based on MgII-selected DLAs, that is absorbers discovered thanks to our knowledge of their MgII feature in optical spectra. We use new observations undertaken at the TNG as well as a careful literature & archival search to build samples of low redshift absorbers classified according to the technique used for their discovery. We successfully recover N(HI) and equivalent widths of FeII 2600, MgII 2796, MgII 2803 and MgII 2852 for a sample of 36 absorbers, 21 of which are MgII-selected. We find that the MgII-selected sample contains a marginally larger fraction of absorbers with log N(HI)>21.0 than seen otherwise at low redshift. If confirmed, this property will in turn affect estimates of Omega_HI which is dominated by the highest HI column densities. We find that log N(HI) does not correlate significantly with metal equivalent widths. Similarly, we find no evidence that gravitational lensing, the fraction of associated systems or redshift evolution affect the absorber samples in a different way. We conclude that the hint of discrepancies in N(HI) distributions most likely arises from small number statistics. Therefore, further observations are required to better clarify the impact of this discrepancy on estimates of Omega_HI at low redshift.
We compute the z = 3 neutral hydrogen column density distribution function f(NHI) for 19 simulations drawn from the OWLS project using a post-processing correction for self-shielding calculated with full radiative transfer of the ionising background radiation. We investigate how different physical processes and parameters affect the abundance of Lyman-limit systems (LLSs) and damped Lyman-alpha absorbers (DLAs) including: i) metal-line cooling; ii) the efficiency of feedback from SNe and AGN; iii) the effective equation of state for the ISM; iv) cosmological parameters; v) the assumed star formation law and; vi) the timing of hydrogen reionization . We find that the normalisation and slope, D = d log10 f /d log10 NHI, of f(NHI) in the LLS regime are robust to changes in these physical processes. Among physically plausible models, f(NHI) varies by less than 0.2 dex and D varies by less than 0.18 for LLSs. This is primarily due to the fact that these uncertain physical processes mostly affect star-forming gas which contributes less than 10% to f(NHI) in the the LLS column density range. At higher column densities, variations in f(NHI) become larger (approximately 0.5 dex at NHI = 10^22 cm^-2 and 1.0 dex at NHI = 10^23 cm^-2) and molecular hydrogen formation also becomes important. Many of these changes can be explained in the context of self-regulated star formation in which the amount of star forming gas in a galaxy will adjust such that outflows driven by feedback balance inflows due to accretion. Data and code to reproduce all figures can be found at the following url: https://bitbucket.org/galtay/hi-cddf-owls-1
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا