We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.
Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at the optical drain and the excitonic signal due to the optical gate. The device also demonstrates experimental proof of principle for all-optical excitonic routers.
We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-plane magnetic field, these optically induced geometric phases result in the effective rotation of the spin about the magnetic field axis and manifest as phase shifts in the spin quantum beat signal generated by two time-delayed circularly polarized optical pulses. The geometric phases generated in this manner more generally perform the role of a spin phase gate, proving potentially useful for quantum information applications.
We investigated the dynamics of the interaction between spin-polarized photo-created carriers and Mn ions on InGaAs/GaAs:Mn structures. The carriers are confined in an InGaAs quantum well and the Mn ions come from a Mn delta-layer grown at the GaAs barrier close to the well. Even though the carriers and the Mn ions are spatially separated, the interaction between them is demonstrated by time-resolved spin-polarized photoluminescence measurements. Using a pre-pulse laser excitation with an opposite circular-polarization clearly reduces the polarization degree of the quantum-well emission for samples where a strong magnetic interaction is observed. The results demonstrate that the Mn ions act as a spin-memory that can be optically controlled by the polarization of the photocreated carriers. On the other hand, the spin-polarized Mn ions also affect the spin-polarization of the subsequently created carriers as observed by their spin relaxation time. These effects fade away with increasing time delays between the pulses as well as with increasing temperatures.
Memristors have emerged as key candidates for beyond-von-Neumann neuromorphic or in-memory computing owing to the feasibility of their ultrahigh-density three-dimensional integration and their ultralow energy consumption. A memristor is generally a two-terminal electronic element with conductance that varies nonlinearly with external electric stimuli and can be remembered when the electric power is turned off. As an alternative, light can be used to tune the memconductance and endow a memristor with a combination of the advantages of both photonics and electronics. Both increases and decreases in optically induced memconductance have been realized in different memristors; however, the reversible tuning of memconductance with light in the same device remains a considerable challenge that severely restricts the development of optoelectronic memristors. Here we describe an all-optically controlled (AOC) analog memristor with memconductance that is reversibly tunable over a continuous range by varying only the wavelength of the controlling light. Our memristor is based on the relatively mature semiconductor material InGaZnO (IGZO) and a memconductance tuning mechanism of light-induced electron trapping and detrapping. We demonstrate that spike-timing-dependent plasticity (STDP) learning can be realized in our device, indicating its potential applications in AOC spiking neural networks (SNNs) for highly efficient optoelectronic neuromorphic computing.
We outline a range of proposals on using quantum rings and nanohelices for terahertz device implementations. We show that an Aharonov-Bohm quantum ring system and a double-gated quantum ring system both permit control over the polarization properties of the associated terahertz radiation. In addition, we review the superlattice properties of a mathematically similar system, that of a nanohelix in external electric fields, which reveals negative differential conductance.