Do you want to publish a course? Click here

Discovering and quantifying nontrivial fixed points in multi-field models

51   0   0.0 ( 0 )
 Added by David Mesterh\\'azy
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the functional renormalization group and the $epsilon$-expansion concertedly to explore multicritical universality classes for coupled $bigoplus_i O(N_i)$ vector-field models in three Euclidean dimensions. Exploiting the complementary strengths of these two methods we show how to make progress in theories with large numbers of interactions, and a large number of possible symmetry-breaking patterns. For the three- and four-field models we find a new fixed point that arises from the mutual interaction between different field sectors, and we establish the absence of infrared-stable fixed point solutions for the regime of small $N_i$. Moreover, we explore these systems as toy models for theories that are both asymptotically safe and infrared complete. In particular, we show that these models exhibit complete renormalization group trajectories that begin and end at nontrivial fixed points.



rate research

Read More

We analyze the validity of perturbative renormalization group estimates obtained within the fixed dimension approach of frustrated magnets. We reconsider the resummed five-loop beta-functions obtained within the minimal subtraction scheme without epsilon-expansion for both frustrated magnets and the well-controlled ferromagnetic systems with a cubic anisotropy. Analyzing the convergence properties of the critical exponents in these two cases we find that the fixed point supposed to control the second order phase transition of frustrated magnets is very likely an unphysical one. This is supported by its non-Gaussian character at the upper critical dimension d=4. Our work confirms the weak first order nature of the phase transition occuring at three dimensions and provides elements towards a unified picture of all existing theoretical approaches to frustrated magnets.
The Lieb-Schultz-Mattis theorem dictates that a trivial symmetric insulator in lattice models is prohibited if lattice translation symmetry and $U(1)$ charge conservation are both preserved. In this paper, we generalize the Lieb-Schultz-Mattis theorem to systems with higher-form symmetries, which act on extended objects of dimension $n > 0$. The prototypical lattice system with higher-form symmetry is the pure abelian lattice gauge theory whose action consists only of the field strength. We first construct the higher-form generalization of the Lieb-Schultz-Mattis theorem with a proof. We then apply it to the $U(1)$ lattice gauge theory description of the quantum dimer model on bipartite lattices. Finally, using the continuum field theory description in the vicinity of the Rokhsar-Kivelson point of the quantum dimer model, we diagnose and compute the mixed t Hooft anomaly corresponding to the higher-form Lieb-Schultz-Mattis theorem.
101 - H. W. Diehl , M. Smock 1999
Continuum models with critical end points are considered whose Hamiltonian ${mathcal{H}}[phi,psi]$ depends on two densities $phi$ and $psi$. Field-theoretic methods are used to show the equivalence of the critical behavior on the critical line and at the critical end point and to give a systematic derivation of critical-end-point singularities like the thermal singularity $sim|{t}|^{2-alpha}$ of the spectator-phase boundary and the coexistence singularities $sim |{t}|^{1-alpha}$ or $sim|{t}|^{beta}$ of the secondary density $<psi>$. The appearance of a discontinuity eigenexponent associated with the critical end point is confirmed, and the mechanism by which it arises in field theory is clarified.
We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.
We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the underlying field theory. The product of the surface tension and the correlation length yields the particle density along the string whose propagation spans the interface. We also determine the order parameter and energy density profiles across the interface, and show that they are in complete agreement with Monte Carlo simulations that we perform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا