Do you want to publish a course? Click here

Circular geodesics and thick tori around rotating boson stars

100   0   0.0 ( 0 )
 Added by Zakaria Meliani Dr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accretion disks play an important role in the evolution of their relativistic inner compact objects. The emergence of a new generation of interferometers will allow to resolve these accretion disks and provide more information about the properties of the central gravitating object. Due to this instrumental leap forward it is crucial to investigate the accretion disk physics near various types of inner compact objects now to deduce later constraints on the central objects from observations. A possible candidate for the inner object is the boson star. Here, we will try to analyze the differences between accretion structures surrounding boson stars and black holes. We aim at analysing the physics of circular geodesics around boson stars and study simple thick accretion tori (so-called Polish doughnuts) in the vicinity of these stars. We realize a detailed study of the properties of circular geodesics around boson stars. We then perform a parameter study of thick tori with constant angular momentum surrounding boson stars. This is done using the boson star models computed by a code constructed with the spectral solver library KADATH. We demonstrate that all the circular stable orbits are bound. In the case of a constant angular momentum torus, a cusp in the torus surface exists only for boson stars with a strong gravitational scalar field. Moreover, for each inner radius of the disk, the allowed specific angular momentum values lie within a constrained range which depends on the boson star considered. We show that the accretion tori around boson stars have different characteristics than in the vicinity of a black hole. With future instruments it could be possible to use these differences to constrain the nature of compact objects.



rate research

Read More

We report simulations regarding tidal disruption clouds orbiting spherically symmetric compact boson stars in two different regimes. First we consider clouds in three different bound orbits close to the boson star and analyze the mechanisms of debris formation for these. We infer from the simulations that the lifetimes of these hot-spots are longer for circularly orbiting clouds than for clouds on eccentric orbits. Next we compare the evolution of more extended and less dense clouds on circular orbits around a boson star and a Schwarzschild black hole. As an outcome of the simulations we observe the formation of a ring-like structure around the boson star endowed with a spiralling shock structure and a constant thermal bremsstrahlung total luminosity. This final configuration contrasts strongly with the black hole scenario where the gas is totally captured behind the event horizon.
It has been shown that scalar fields can form gravitationally bound compact objects called boson stars. In this study, we analyze boson star configurations where the scalar fields contain a small amount of angular momentum and find two new classes of solutions. In the first case all particles are in the same slowly rotating state and in the second case the majority of particles are in the non-rotating ground state and a small number of particles are in an excited rotating state. In both cases, we solve the underlying Gross-Pitaevskii-Poisson equations that describe the profile of these compact objects both numerically as well as analytically through series expansions.
We study the orbital and epicyclic frequencies of particles orbiting around rapidly rotating neutron stars and strange stars in a particular scalar-tensor theory of gravity. We find very large deviations of these frequencies, when compared to their corresponding values in general relativity, for the maximum-mass rotating models. In contrast, for models rotating with spin frequency of 700Hz (approximately the largest known rotation rate of neutron stars), the deviations are generally small. Nevertheless, for a very stiff equation of state and a high mass the deviation of one of the epicyclic frequencies from its GR value is appreciable even at a spin frequency of 700Hz. In principle, such a deviation could become important in models of quasi-periodic oscillations in low-mass x-ray binaries and could serve as a test of strong gravity (if other parameters are well constraint). Even though the present paper is concentrated mainly on orbital and epicyclic frequencies, we present here for the first time rapidly rotating, scalarized equilibrium compact stars with realistic hadronic equations of state and strange matter equation of state. We also provide analytical expressions for the exterior spacetime of scalarized neutron stars and their epicyclic frequencies in the nonrotating limit.
93 - G. Torok , M. Urbanec , K. Adamek 2014
The innermost stable cicular orbit (ISCO) of an accretion disc orbiting a neutron star (NS) is often assumed a unique prediction of general relativity. However, it has been argued that ISCO also appears around highly elliptic bodies described by Newtonian theory. In this sense, the behaviour of an ISCO around a rotating oblate neutron star is formed by the interplay between relativistic and Newtonian effects. Here we briefly explore the consequences of this interplay using a straightforward analytic approach as well as numerical models that involve modern NS equations of state. We examine the ratio K between the ISCO radius and the radius of the neutron star. We find that, with growing NS spin, the ratio K first decreases, but then starts to increase. This non-monotonic behaviour of K can give rise to a neutron star spin interval in which ISCO appears for two very different ranges of NS mass. This may strongly affect the distribution of neutron stars that have an ISCO (ISCO-NS). When (all) neutron stars are distributed around a high mass M0, the ISCO-NS spin distribution is roughly the same as the spin distribution corresponding to all neutron stars. In contrast, if M0 is low, the ISCO-NS distribution can only have a peak around a high value of spin. Finally, an intermediate value of M0 can imply an ISCO-NS distribution divided into two distinct groups of slow and fast rotators. Our findings have immediate astrophysical applications. They can be used for example to distinguish between different models of high-frequency quasiperiodic oscillations observed in low-mass NS X-ray binaries.
145 - Arkadip Basak 2017
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic Equations of states (EOS) from the CompOSE database. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground based LIGO/VIRGO interferometers is also discussed very briefly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا