Do you want to publish a course? Click here

Gapless surface states in a three-dimensional Chalker-Coddington type network model

135   0   0.0 ( 0 )
 Added by Tetsuyuki Ochiai
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the emergence of gapless surface states in a three-dimensional Chalker-Coddington type network model with spatial periodicity. The model consists of a ring network placed on every face of the cubic unit cells in the simple cubic lattice. The scattering among ring-propagating modes in the adjacent rings is described by the S-matrices, which control possible symmetries of the system. The model maps to a Floquet-Bloch system, and the quasienergy spectrum can exhibit a gapped bulk band structure and gapless surface states. Symmetry properties of the system and robustness of the gapless surface states are explored in comparison to topological crystalline insulator. We also discuss other crystal structures, a gauge symmetry, and a possible optical realization of the network model.



rate research

Read More

173 - Keith Slevin , Tomi Ohtsuki 2012
In Ref.1 (Physical Review B 80, 041304(R) (2009)), we reported an estimate of the critical exponent for the divergence of the localization length at the quantum Hall transition that is significantly larger than those reported in the previous published work of other authors. In this paper, we update our finite size scaling analysis of the Chalker-Coddington model and suggest the origin of the previous underestimate by other authors. We also compare our results with the predictions of Lutken and Ross (Physics Letters B 653, 363 (2007)).
We consider the Chalker-Coddington network model for the Integer Quantum Hall Effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models, with two loop flavours. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra, and parameterised by the loop fugacity $n$. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-Gas theory, whereas the other two branches (3,4) couple the two loop flavours, and relate to an $SU(2)_r times SU(2)_r / SU(2)_{2r}$ Wess-Zumino-Witten (WZW) coset model for the particular values $n= -2cos[pi/(r+2)]$ where $r$ is a positive integer. The truncated Chalker-Coddington model is the $n=0$ point of branch 4. By numerical diagonalisation, we find that its universality class is neither an analytic continuation of the WZW coset, nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.
We study transport properties of a Chalker-Coddington type model in the plane which presents asymptotically pure anti-clockwise rotation on the left and clockwise rotation on the right. We prove delocalisation in the sense that the absolutely continuous spectrum covers the whole unit circle. The result is of topological nature and independent of the details of the model.
The experimental discovery of the topological Dirac semimetal establishes a platform to search for various exotic quantum phases in real materials. ZrSiS-type materials have recently emerged as topological nodal-line semimetals where gapped Dirac-like surface states are observed. Here, we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of ZrGeTe, a nonsymmorphic symmetry protected Dirac semimetal. We observe two Dirac-like gapless surface states at the same $bar X$ point of the Brillouin zone. Our theoretical analysis and first-principles calculations reveal that these are protected by crystalline symmetry. Hence, ZrGeTe appears as a rare example of a naturally fine tuned system where the interplay between symmorphic and non-symmorphic symmetry leads to rich phenomenology, and thus opens for opportunities to investigate the physics of Dirac semimetallic and topological insulating phases realized in a single material.
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated. It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance $(2n+1)frac{e^2}{h}$ multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا