No Arabic abstract
In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423-1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this paper, we propose estimation and inference procedures for the GACM when the dimension of the variables is high. Specifically, we propose a groupwise penalization based procedure to distinguish significant covariates for the large $p$ small $n$ setting. The procedure is shown to be consistent for model structure identification. Further, we construct simultaneous confidence bands for the coefficient functions in the selected model based on a refined two-step spline estimator. We also discuss how to choose the tuning parameters. To estimate the standard deviation of the functional estimator, we adopt the smoothed bootstrap method. We conduct simulation experiments to evaluate the numerical performance of the proposed methods and analyze an obesity data set from a genome-wide association study as an illustration.
In this paper we discuss the estimation of a nonparametric component $f_1$ of a nonparametric additive model $Y=f_1(X_1) + ...+ f_q(X_q) + epsilon$. We allow the number $q$ of additive components to grow to infinity and we make sparsity assumptions about the number of nonzero additive components. We compare this estimation problem with that of estimating $f_1$ in the oracle model $Z= f_1(X_1) + epsilon$, for which the additive components $f_2,dots,f_q$ are known. We construct a two-step presmoothing-and-resmoothing estimator of $f_1$ and state finite-sample bounds for the difference between our estimator and some smoothing estimators $hat f_1^{text{(oracle)}}$ in the oracle model. In an asymptotic setting these bounds can be used to show asymptotic equivalence of our estimator and the oracle estimators; the paper thus shows that, asymptotically, under strong enough sparsity conditions, knowledge of $f_2,dots,f_q$ has no effect on estimation accuracy. Our first step is to estimate $f_1$ with an undersmoothed estimator based on near-orthogonal projections with a group Lasso bias correction. We then construct pseudo responses $hat Y$ by evaluating a debiased modification of our undersmoothed estimator of $f_1$ at the design points. In the second step the smoothing method of the oracle estimator $hat f_1^{text{(oracle)}}$ is applied to a nonparametric regression problem with responses $hat Y$ and covariates $X_1$. Our mathematical exposition centers primarily on establishing properties of the presmoothing estimator. We present simulation results demonstrating close-to-oracle performance of our estimator in practical applications.
In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for real-time estimation and inference. We propose an online debiased lasso (ODL) method to accommodate the special structure of streaming data. ODL differs from offline debiased lasso in two important aspects. First, in computing the estimate at the current stage, it only uses summary statistics of the historical data. Second, in addition to debiasing an online lasso estimator, ODL corrects an approximation error term arising from nonlinear online updating with streaming data. We show that the proposed online debiased estimators for the GLMs are consistent and asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of the proposed ODL method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. A streaming dataset from the National Automotive Sampling System-Crashworthiness Data System is analyzed to illustrate the application of the proposed method.
In this article we study the existence and strong consistency of GEE estimators, when the generalized estimating functions are martingales with random coefficients. Furthermore, we characterize estimating functions which are asymptotically optimal.
Let $X^{(n)}$ be an observation sampled from a distribution $P_{theta}^{(n)}$ with an unknown parameter $theta,$ $theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(theta)$ for a functional $f:Emapsto {mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}sim P_{theta}^{(n)}.$ Assuming that there exists an estimator $hat theta_n=hat theta_n(X^{(n)})$ of parameter $theta$ such that $sqrt{n}(hat theta_n-theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:Emapsto {mathbb R}$ such that $g(hat theta_n)$ is an asymptotically normal estimator of $f(theta)$ with $sqrt{n}$ rate provided that $s>frac{1}{1-alpha}$ and $dleq n^{alpha}$ for some $alphain (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(hat theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $sqrt{n}(hat theta_n-theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.
In this study, we propose shrinkage methods based on {it generalized ridge regression} (GRR) estimation which is suitable for both multicollinearity and high dimensional problems with small number of samples (large $p$, small $n$). Also, it is obtained theoretical properties of the proposed estimators for Low/High Dimensional cases. Furthermore, the performance of the listed estimators is demonstrated by both simulation studies and real-data analysis, and compare its performance with existing penalty methods. We show that the proposed methods compare well to competing regularization techniques.