No Arabic abstract
We study the positivity and regularity of solutions to the fractional porous medium equations $u_t+(-Delta)^su^m=0$ in $(0,infty)timesOmega$, for $m>1$ and $sin (0,1)$ and with Dirichlet boundary data $u=0$ in $(0,infty)times({mathbb R}^NsetminusOmega)$, and nonnegative initial condition $u(0,cdot)=u_0geq0$. Our first result is a quantitative lower bound for solutions which holds for all positive times $t>0$. As a consequence, we find a global Harnack principle stating that for any $t>0$ solutions are comparable to $d^{s/m}$, where $d$ is the distance to $partialOmega$. This is in sharp contrast with the local case $s=1$, in which the equation has finite speed of propagation. After this, we study the regularity of solutions. We prove that solutions are classical in the interior ($C^infty$ in $x$ and $C^{1,alpha}$ in $t$) and establish a sharp $C^{s/m}_x$ regularity estimate up to the boundary. Our methods are quite general, and can be applied to a wider class of nonlocal parabolic equations of the form $u_t-mathcal L F(u)=0$ in $Omega$, both in bounded or unbounded domains.
We study existence, uniqueness, and regularity properties of the Dirichlet problem related to fractional Dirichlet energy minimizers in a complete doubling metric measure space $(X,d_X,mu_X)$ satisfying a $2$-Poincare inequality. Given a bounded domain $Omegasubset X$ with $mu_X(XsetminusOmega)>0$, and a function $f$ in the Besov class $B^theta_{2,2}(X)cap L^2(X)$, we study the problem of finding a function $uin B^theta_{2,2}(X)$ such that $u=f$ in $XsetminusOmega$ and $mathcal{E}_theta(u,u)le mathcal{E}_theta(h,h)$ whenever $hin B^theta_{2,2}(X)$ with $h=f$ in $XsetminusOmega$. We show that such a solution always exists and that this solution is unique. We also show that the solution is locally Holder continuous on $Omega$, and satisfies a non-local maximum and strong maximum principle. Part of the results in this paper extend the work of Caffarelli and Silvestre in the Euclidean setting and Franchi and Ferrari in Carnot groups.
We give a detailed study of the infinite-energy solutions of the Cahn-Hilliard equation in the 3D cylindrical domains in uniformly local phase space. In particular, we establish the well-posedness and dissipativity for the case of regular potentials of arbitrary polynomial growth as well as for the case of sufficiently strong singular potentials. For these cases, we prove the further regularity of solutions and the existence of a global attractor. For the cases where we have failed to prove the uniqueness (e.g., for the logarithmic potentials), we establish the existence of the trajectory attractor and study its properties.
We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.
We study existence of global solutions and finite time blow-up of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $rho(x) u^p$ with $p>1$; this is a mathematical model of a thermal evolution of a heated plasma (see [25]). The density decays slowly at infinity, in the sense that $rho(x)lesssim |x|^{-q}$ as $|x|to +infty$ with $qin [0, 2).$ We show that for large enough initial data, solutions blow-up in finite time for any $p>1$. On the other hand, if the initial datum is small enough and $p>bar p$, for a suitable $bar p$ depending on $rho, m, N$, then global solutions exist. In addition, if $p<underline p$, for a suitable $underline pleq bar p$ depending on $rho, m, N$, then the solution blows-up in finite time for any nontrivial initial datum; we need the extra hypotehsis that $qin [0, epsilon)$ for $epsilon>0$ small enough, when $mleq p<underline p$. Observe that $underline p=bar p$, if $rho(x)$ is a multiple of $|x|^{-q}$ for $|x|$ large enough. Such results are in agreement with those established in [41], where $rho(x)equiv 1$. The case of fast decaying density at infinity, i.e. $qgeq 2$, is examined in [31].
We are concerned with nonnegative solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $u^p$ with $p>1$. The density decays {it fast} at infinity, in the sense that $rho(x)sim |x|^{-q}$ as $|x|to +infty$ with $qge 2.$ In the case when $q=2$, if $p$ is bigger than $m$, we show that, for large enough initial data, solutions blow-up in finite time and for small initial datum, solutions globally exist. On the other hand, in the case when $q>2$, we show that existence of global in time solutions always prevails. The case of {it slowly} decaying density at infinity, i.e. $qin [0,2)$, is examined in [41].