Do you want to publish a course? Click here

Topological semi-metals with line nodes and drumhead surface states

136   0   0.0 ( 0 )
 Added by Ching-Kai Chiu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an ordinary three-dimensional metal the Fermi surface forms a two-dimensional closed sheet separating the filled from the empty states. Topological semimetals, on the other hand, can exhibit protected one-dimensional Fermi lines or zero-dimensional Fermi points, which arise due to an intricate interplay between symmetry and topology of the electronic wavefunctions. Here, we study how reflection symmetry, time-reversal symmetry, SU(2) spin-rotation symmetry, and inversion symmetry lead to the topological protection of line nodes in three-dimensional semi-metals. We obtain the crystalline invariants that guarantee the stability of the line nodes in the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces states with a nearly flat dispersion. By deriving a relation between the crystalline invariants and the Berry phase, we establish a direct connection between the stability of the line nodes and the topological surface states. As a representative example of a topological semimetal with line nodes, we consider Ca$_3$P$_2$ and discuss the topological properties of its Fermi line in terms of a low-energy effective theory and a tight-binding model, derived from ab initio DFT calculations. Due to the bulk-boundary correspondence, Ca$_3$P$_2$ displays nearly dispersionless surface states, which take the shape of a drumhead. These surface states could potentially give rise to novel topological response phenomena and provide an avenue for exotic correlation physics at the surface.



rate research

Read More

A topological nodal-line semimetal is a new condensed matter state with one-dimensional bulk nodal lines and two-dimensional drumhead surface bands. Based on first-principles calculations and our effective k . p model, we propose the existence of topological nodal-line fermions in the ternary transition- metal chalcogenide TlTaSe2. The noncentrosymmetric structure and strong spin-orbit coupling give rise to spinful nodal-line bulk states which are protected by a mirror reflection symmetry of this compound. This is remarkably distinguished from other proposed nodal-line semimetals such as Cu3NPb(Zn) in which nodal lines exist only in the limit of vanishing spin-orbit coupling. We show that the drumhead surface states in TlTaSe2, which are associated with the topological nodal lines, exhibit an unconventional chiral spin texture and an exotic Lifshitz transition as a consequence of the linkage among multiple drumhead surface-state pockets.
170 - Rui-Lin Chu , Wen-Yu Shan , Jie Lu 2010
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films.
We study the electronic structure of the nodal line semimetal ZrSiTe both experimentally and theoretically. We find two different surface states in ZrSiTe - topological drumhead surface states and trivial floating band surface states. Using the spectra of Wilson loops, we show that a non-trivial Berry phase that exists in a confined region within the Brillouin Zone gives rise to the topological drumhead-type surface states. The $mathbb{Z}_2$ structure of the Berry phase induces a $mathbb{Z}_2$ modular arithmetic of the surface states, allowing surface states deriving from different nodal lines to hybridize and gap out, which can be probed by a set of Wilson loops. Our findings are confirmed by textit{ab-initio} calculations and angle-resolved photoemission experiments, which are in excellent agreement with each other and the topological analysis. This is the first complete characterization of topological surface states in the family of square-net based nodal line semimetals and thus fundamentally increases the understanding of the topological nature of this growing class of topological semimetals.
We address the problem of hybridization between topological surface states and a non-topological flat bulk band. Our model, being a mixture of three-dimensional Bernevig-Hughes-Zhang and two-dimensional pseudospin-1 Hamiltonian, allows explicit treatment of the topological surface state evolution by continuously changing the hybridization between the inverted bands and an additional parasitic flat band in the bulk. We show that the hybridization with a flat band lying below the edge of conduction band converts the initial Dirac-like surface states into a branch below and one above the flat band. Our results univocally demonstrate that the upper branch of the topological surface states is formed by Dyakonov-Khaetskii surface states known for HgTe since the 1980s. Additionally we explore an evolution of the surface states and the arising of Fermi arcs in Dirac semimetals when the flat band crosses the conduction band.
Preceded by the discovery of topological insulators, Dirac and Weyl semimetals have become a pivotal direction of research in contemporary condensed matter physics. While easily accessible from a theoretical viewpoint, these topological semimetals pose a serious challenge in terms of experimental synthesis and analysis to allow for their unambiguous identification. In this work, we report on detailed transport experiments on compressively strained HgTe. Due to the superior sample quality in comparison to other topological semimetallic materials, this enables us to resolve the interplay of topological surface states and semimetallic bulk states to an unprecedented degree of precision and complexity. As our gate design allows us to precisely tune the Fermi level at the Weyl and Dirac points, we identify a magnetotransport regime dominated by Weyl/Dirac bulk state conduction for small carrier densities and by topological surface state conduction for larger carrier densities. As such, similar to topological insulators, HgTe provides the archetypical reference for the experimental investigation of topological semimetals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا